数据库中事务undo、redo的策略
一、事务
- 原子性(Atomicity)
事务中的所有操作,一个操作是不可中断的,要么全部完成,要么不做任何操作,不能只做部分操作。如果在执行的过程中发生了错误,要回滚(Rollback)到事务开始前的状态,就像这个事务从来没有执行过。
- 持久性(Durability)
事务一旦完成,数据库系统会将该事务修改后的数据完全的记录到持久的存储上。
- 隔离性(Isolation):
多个事务并发执行时,一个事务的执行不应影响其他事务的执行。
- 持久性(Durability):
已被提交的事务对数据库的修改应该永久保存在数据库中。
二、undo
Undo Log的原理:为了满足事务的原子性,在操作任何数据之前,首先将数据备份到一个地方(这个存储数据备份的地方称为Undo Log)。然后进行数据的修改。如果出现了错误或者用户执行了ROLLBACK语句,系统可以利用Undo Log中的备份将数据恢复到事务开始之前的状态。除了可以保证事务的原子性,Undo Log也可以用来辅助完成事务的持久化。
数据库对数据处理的过程:先把数据读到内存中,然后修改内存中的数据,最后将数据写回磁盘。
1、用Undo Log实现原子性和持久化的事务的简化过程
NAME | MONEY |
Huang | 10,000 |
Zhang | 20,000 |
Zhang 取出 5,000 即:
Update Zhang
SET Money = Money -5000
A.事务开始.
B.记录Zhang.MONEY = 20,000到undo log.
C.修改Zhang.MONEY = 15,000.
D.将undo log写到磁盘。
E.将数据写到磁盘。
F.事务提交
2、之所以能同时保证原子性和持久化,是因为以下特点:
A. 更新数据前记录Undo log。
B. 为了保证持久性,必须将数据在事务提交前写到磁盘。只要事务成功提交,数据必然已经持久化。
C. Undo log必须先于数据持久化到磁盘。如果在E,F这两步系统崩溃,undo log是完整的,可以用来回滚事务。
D. 如果在A-D之间系统崩溃,因为数据没有持久化到磁盘。所以磁盘上的数据还是保持在事务开始前的状态。
缺陷:每个事务提交前将数据和Undo Log写入磁盘,这样会导致大量的磁盘IO,因此性能很低。
3、对undo段的一个误解
通常对undo有一个误解,认为undo用 于数据库物理地恢复到执行语句或事务之前的样子,但实际上并非如此。数据库只是逻辑地恢复到原来的样子,所有修改都被逻辑地取消,但是数据结构以及数据库 块本身在回滚后可能大不相同。(比如一个插入操作,新分配了一些数据块。后来事务失败,插入操作全部回滚,新分配的一些数据块还是存在的)
/* (有助理解)
原因在于:在所有多用户系统中,可能会有数十、数百甚至数千个并发事务。数据库的主要功能之一就是协调对数据的并发访问。也 许我们的事务在修改一些块,而一般来讲往往会有许多其他的事务也在修改这些块。因此,不能简单地将一个块放回到我们的事务开始前的样子,这样会撤销其他人 (其他事务)的工作!
例如,假设我们的事务执行了一个INSERT语句,这条语句导致分配一个新区段(也就是说,导致表的空间增大)。通过执行这个INSET,我们将得到一个新的块,格式化这个块以便使用,并在其中放上一些数据。此时,可能出现另外某个事务,它也向这个块中插入数据。如果要回滚我们的事务,显然不能取消对这个块的格式化和空间分配。因此,Oracle回滚时,它实际上会做与先前逻辑上相反的工作。对于每个INSERT,Oracle会完成一个DELETE。对于每个DELETE,Oracle会执行一个INSERT。对于每个UPDATE,Oracle则会执行一个“反UPDATE“,或者执行另一个UPDATE将修改前的行放回去。
*/
所以有一种异常情况就很容易解释了,一个表明明只有1000行左右的数据,一条select * from table 语句可能需要耗时1,2分钟。这张表应该是经常进行新增删除操作的表,比如我新增了1000万行数据,然后又将这些数据删除。对这个表进行全表扫描的时候,仍然会去扫描这1000万行以前所占用的那些数据块,看看里面是否包含数据。
如果能够将数据缓存一段时间,就能减少IO提高性能。但是这样就会丧失事务的持久性。因此引入了另外一种机制来实现持久化,即Redo Log.
三、Redo Log
当数据库对数据做修改的时候,需要把数据页从磁盘读到buffer pool中,然后在buffer pool中进行修改,那么这个时候buffer pool中的数据页就与磁盘上的数据页内容不一致,称buffer pool的数据页为dirty page 脏数据,如果这个时候发生非正常的DB服务重启,那么这些数据还没在内存,并没有同步到磁盘文件中(注意,同步到磁盘文件是个随机IO),也就是会发生数据丢失,如果这个时候,能够在有一个文件,当buffer pool 中的data page变更结束后,把相应修改记录记录到这个文件(注意,记录日志是顺序IO),那么当DB服务发生crash的情况,恢复DB的时候,也可以根据这个文件的记录内容,重新应用到磁盘文件,数据保持一致。
1、原理
和Undo Log相反,Redo Log记录的是新数据的备份。在事务提交前,只要将Redo Log持久化即可,不需要将数据持久化。当系统崩溃时,虽然数据没有持久化,但是Redo Log已经持久化。系统可以根据Redo Log的内容,将所有数据恢复到最新的状态。
redo日志应首先持久化在磁盘上,然后事务的操作结果才写入db buffer,(此时,内存中的数据和data file对应的数据不同,我们认为内存中的数据是脏数据),db buffer再选择合适的时机将数据持久化到data file中。这种顺序可以保证在需要故障恢复时恢复最后的修改操作。先持久化日志的策略叫做Write Ahead Log
,即预写日志。
2、Undo + Redo事务的简化过程
NAME | MONEY |
Huang | 10,000 |
Zhang | 20,000 |
Zhang 取出 5,000 即:
Update Zhang
SET Money = Money -5000
A.事务开始.
B.记录Zhang.MONEY = 20,000到undo log.
C.修改Zhang.MONEY = 15,000.
D.记录Zhang.MONEY = 15,000.到redo log.
E.将redo log写入磁盘。
F.事务提交
3、Undo + Redo事务的特点
A. 为了保证持久性,必须在事务提交前将Redo Log持久化。
B. 数据不需要在事务提交前写入磁盘,而是缓存在内存中,等硬盘空闲或别的时间再写入。
C. Redo Log 保证事务的持久性。
D. Undo Log 保证事务的原子性。
E. 有一个隐含的特点,数据必须要晚于redo log写入持久存储。
发生场景:
对于某事务T,在log file的记录中必须开始于事务开始标记(比如“start T”),结束于事务结束标记(比如“end T”、”commit T”)。在系统恢复时,如果在log file中某个事务没有事务结束标记,那么需要对这个事务进行undo操作,如果有事务结束标记,则redo。
4、IO性能
Undo + Redo的设计主要考虑的是提升IO性能。虽说通过缓存数据,减少了写数据的IO.但是却引入了新的IO,即写Redo Log的IO。如果Redo Log的IO性能不好,就不能起到提高性能的目的。为了保证Redo Log能够有比较好的IO性能,InnoDB 的 Redo Log的设计有以下几个特点:
A. 尽量保持Redo Log存储在一段连续的空间上。因此在系统第一次启动时就会将日志文件的空间完全分配。以顺序追加的方式记录Redo Log,通过顺序IO来改善性能。
B. 批量写入日志。日志并不是直接写入文件,而是先写入redo log buffer.当需要将日志刷新到磁盘时 (如事务提交),将许多日志一起写入磁盘.
C. 并发的事务共享Redo Log的存储空间,它们的Redo Log按语句的执行顺序,依次交替的记录在一起,
以减少日志占用的空间。例如,Redo Log中的记录内容可能是这样的:
记录1: <trx1, insert …>
记录2: <trx2, update …>
记录3: <trx1, delete …>
记录4: <trx3, update …>
记录5: <trx2, insert …>
D. 因为C的原因,当一个事务将Redo Log写入磁盘时,也会将其他未提交的事务的日志写入磁盘。
E. Redo Log上只进行顺序追加的操作,当一个事务需要回滚时,它的Redo Log记录也不会从 Redo Log中删除掉。
四、恢复(Recovery)
- 恢复策略
前面说到未提交的事务和回滚了的事务也会记录Redo Log,因此在进行恢复时,这些事务要进行特殊的处理.有2中不同的恢复策略:
A. 进行恢复时,只重做已经提交了的事务。
B. 进行恢复时,重做所有事务包括未提交的事务和回滚了的事务。然后通过Undo Log回滚那些未提交的事务。
- 恢复时期
重启数据库时进行恢复。
db buffer写入data file之前,先把日志写入log file。这种方式可以减少磁盘IO,增加吞吐量。不过,这种方式适用于一致性要求不高的场合。因为如果出现断电等系统故障,log buffer、db buffer中的完成的事务会丢失。以转账为例,如果用户的转账事务在这种情况下丢失了,这意味着在系统恢复后用户需要重新转账。
- InnoDB存储引擎的恢复机制
MySQL数据库InnoDB存储引擎使用了B策略, InnoDB存储引擎中的恢复机制有几个特点:
A. 在重做Redo Log时,并不关心事务性。 恢复时,没有BEGIN,也没有COMMIT,ROLLBACK的行为。也不关心每个日志是哪个事务的。尽管事务ID等事务相关的内容会记入Redo Log,这些内容只是被当作要操作的数据的一部分。
B. 使用B策略就必须要将Undo Log持久化,而且必须要在写Redo Log之前将对应的Undo Log写入磁盘。Undo和Redo Log的这种关联,使得持久化变得复杂起来。为了降低复杂度,InnoDB将Undo Log看作数据,因此记录Undo Log的操作也会记录到redo log中。这样undo log就可以象数据一样缓存起来,而不用在redo log之前写入磁盘了。
包含Undo Log操作的Redo Log,看起来是这样的:
记录1: <trx1, Undo log insert <undo_insert …>>
记录2: <trx1, insert …>
记录3: <trx2, Undo log insert <undo_update …>>
记录4: <trx2, update …>
记录5: <trx3, Undo log insert <undo_delete …>>
记录6: <trx3, delete …>
C. 到这里,还有一个问题没有弄清楚。既然Redo没有事务性,那岂不是会重新执行被回滚了的事务?确实是这样。同时Innodb也会将事务回滚时的操作也记录到redo log中。回滚操作本质上也是对数据进行修改,因此回滚时对数据的操作也会记录到Redo Log中。
一个回滚了的事务的Redo Log,看起来是这样的:
记录1: <trx1, Undo log insert <undo_insert …>>
记录2: <trx1, insert A…>
记录3: <trx1, Undo log insert <undo_update …>>
记录4: <trx1, update B…>
记录5: <trx1, Undo log insert <undo_delete …>>
记录6: <trx1, delete C…>
记录7: <trx1, insert C>
记录8: <trx1, update B to old value>
记录9: <trx1, delete A>
一个被回滚了的事务在恢复时的操作就是先redo再undo,因此不会破坏数据的一致性.
五、写入时间(检查点checkpoint):
checkpoint是为了定期将db buffer的内容刷新到data file。当遇到内存不足、db buffer已满等情况时,需要将db buffer中的内容/部分内容(特别是脏数据)转储到data file中。在转储时,会记录checkpoint发生的时刻。在故障恢复时候,只需要redo/undo最近的一次checkpoint之后的操作。
checkpoint解决的问题:
缩短数据库的恢复时间
缓冲池不够用,将脏页刷新回磁盘
重做日志不可用(不可被重用,不可被覆盖),刷新脏页
1.缩短数据库恢复时间重做日志中记录了的checkpoint的位置,这个点之前的页已经刷新回磁盘,只需要对checkpoint之后的重做日志进行恢复。这样就大大缩短了恢复时间。
2.缓冲池不够用时,根据LRU算法,溢出最近最少使用的页,如果页为脏页,强制执行checkpoint,将页刷新回磁盘。
3.重做日志不可用,是指,重做日志的这部分不可以被覆盖,为什么?因为:这部分对应的数据还未刷新到磁盘上。重做日志的设计是循环使用的。数据库恢复时,如果不需要,即可被覆盖;如果需要,必须强制执行checkpoint,将缓冲池中的页至少刷新到当前重做日志的位置。