基于自动反馈的大语言模型纠错策略综述

本文“Automatically Correcting Large Language Models: Surveying the landscape of diverse self-correction strategies”主要探讨了大语言模型(LLMs)的自我纠正策略,具体内容如下:

  1. 引言
    • LLMs的发展与问题:LLMs在NLP任务中表现出色,但存在如幻觉、推理不忠实、生成有害内容和不遵循规则等问题,这些问题阻碍了其在实际中的应用。
    • 自我纠正策略的兴起:为解决这些问题,一种流行的策略是让LLMs从反馈中学习,其中利用自动化反馈的自我纠正方法备受关注,因为它能减少对人工反馈的依赖,使基于LLM的解决方案更实用。
  2. 自动反馈纠正LLMs的分类法
    • 概念框架:提出了一个概念框架,将纠正LLMs的过程类比为医疗过程,涉及语言模型(患者)、评论模型(医生和诊断)和优化模型(治疗)三个部分。并基于此框架,从五个关键维度对现有方法进行分类,包括纠正的问题、反馈的来源和格式、反馈的使用时间以及如何用反馈纠正模型。
    • 具体分类
      • 纠正的问题:主要包括幻觉、推理不忠实、有毒有害内容和代码缺陷等四类错误。
      • 反馈的来源:分为人类反馈和自动化反馈,本文重点关注自动化反馈,其又可分为自反馈(来自LLM自身)和外部反馈(来自外部模型、工
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值