本文“Automatically Correcting Large Language Models: Surveying the landscape of diverse self-correction strategies”主要探讨了大语言模型(LLMs)的自我纠正策略,具体内容如下:
- 引言
- LLMs的发展与问题:LLMs在NLP任务中表现出色,但存在如幻觉、推理不忠实、生成有害内容和不遵循规则等问题,这些问题阻碍了其在实际中的应用。
- 自我纠正策略的兴起:为解决这些问题,一种流行的策略是让LLMs从反馈中学习,其中利用自动化反馈的自我纠正方法备受关注,因为它能减少对人工反馈的依赖,使基于LLM的解决方案更实用。
- 自动反馈纠正LLMs的分类法
- 概念框架:提出了一个概念框架,将纠正LLMs的过程类比为医疗过程,涉及语言模型(患者)、评论模型(医生和诊断)和优化模型(治疗)三个部分。并基于此框架,从五个关键维度对现有方法进行分类,包括纠正的问题、反馈的来源和格式、反馈的使用时间以及如何用反馈纠正模型。
- 具体分类
- 纠正的问题:主要包括幻觉、推理不忠实、有毒有害内容和代码缺陷等四类错误。
- 反馈的来源:分为人类反馈和自动化反馈,本文重点关注自动化反馈,其又可分为自反馈(来自LLM自身)和外部反馈(来自外部模型、工