台大李宏毅课程笔记1——Regression&Basic Concept

本次笔记主要包含两节课:Regression(回归)和Basic Concept(基本概念)
先放上视频链接:
Regression(回归)
https://www.bilibili.com/video/BV1JE411g7XF?p=3

Basic Concept(基本概念)
https://www.bilibili.com/video/BV1JE411g7XF?p=4

Regression

提出问题

本节课李宏毅老师是以宝可梦升级后的CP值预测作为学习目标的。(这个思路非常好,用一个有趣的又容易实现的任务作为学习目标,完成目标的同时学习新的技能!)
在这里插入图片描述其实,一个网络模型本质就是一个function。无论要做什么任务,其本质都是求取一个函数,可以根据输入参数得到预期的输出数据。
这个问题里,已知参数就是升级前的宝可梦的所有数据,包括现有CP,weight,Height,种族之类的信息。将这些信息输入到建立的model,以升级后的CP作为输出,即得到预期结果。
然后,收集大量的宝可梦升级前后的数据,即可对model进行训练,使其参数能够使输出的CP值与真实的CP值接近,那么model训练成功。

建立模型

这里需要建立模型,用最简单的线性模型,即为:
x为输入数据,每个数据有多个特征(features),网络以每个特征的一次信息作为输入,给其配备权重值,即为 ω \omega ω。则有:
y = ω × x + b y=\omega \times x+b y=ω×x+b
其中,x为多个features,w维度与其一致,b为偏置(一维),bias。
这样就建立好了模型。

在这里插入图片描述这里,李老师通俗易懂的讲了模型选择的问题,如图,模型参数越多,函数越复杂,参数能表示的函数空间所包含的函数个数也越多,就越可能包含目标函数,但是,解空间复杂了,真正找到真实目标函数的难度也越大了,所以,并不是模型越复杂越好,合适的才是最好的,最好能包含目标函数,又容易找到。

梯度下降

这个部分到处都有讲,就不细说了,就是通常说的梯度下降,李宏毅老师讲的很通俗易懂。他默认同学们数学基础一般,所以每次涉及数学问题,都进行了尽可能通俗的解释。
在这里插入图片描述
总之就是朝着是Loss函数越来越低的方向调整参数w和b的值就对了。

Regularization(正则化)

李老师后文还讲了正则化问题,通过加入正则项,实现了参数个数的限制,从而降低函数空间复杂度,使函数曲线更平滑,不通过过于弯曲的曲线去覆盖所有训练集,避免过拟合。

在这里插入图片描述

Basic Concept(基本概念)

训练模型在测试集的误差构成:
bias(偏差)+Variance(方差)

BiasVariance
模型参数小模型参数大
函数空间过小函数空间过大
Underfitting(欠拟合)Overfitting(过拟合)
模型过小数据过少
train/public/private结果接近train/public结果好private结果差
存在问题存在问题
模型不包含真实函数模型过于复杂,完全表示了训练数据
解决方案解决方案
修改模型,使其覆盖真实函数增加数据,使模型不能完全覆盖
Redesign ModelRegularization

重点备忘

这节课有一个很重要的总结建议

模型是有train data训练出来的,不是由test data修正出来的。
不要依据test data的结果来修改model,这样会使model包含public test data的信息,从而导致其在private test data的结果反而不好。
可以将train data分为多份,取一部分作为Validation data(校准数据),这样可以优化模型,又避免引入test data的信息。
一般可以将train data分为多份,每次取一份作为校准数据,循环多次,选择error最小的一组训练模型。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值