K最近邻算法学习(3)

KNN实战之酒的分类

使用scikit-learn中内置的酒数据集来进行实验,划分训练集和测试集,对KNN模型进行评分。

from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
#导入数据集
wine_dataset = load_wine()
#keys:data,target(目标分类),target_names,DESCR(数据描述),feature_names
#三类:class_0:59,class_1:71,class_2:48
X_train,X_test,y_train,y_test = train_test_split(
wine_dataset['data'],wine_dataset['target'],random_state=0)
#训练模型
knn = KNeighborsClassifier(n_neighbors = 1)
knn.fit(X_train,y_train)
#测试得分
print("测试数据集得分:{:.2f}".format(knn.score(X_test,y_test)))

测试结果如下:
在这里插入图片描述
可以看到这个模型在预测测试数据集的样本分类上得分并不好,仅有0.76的准确率。
下面进行新酒数据的测试,加入这瓶酒的数据为Alcohol:13.2,Malic acid:2.77,Ash:2.51,
Alcalinity of ash:18.5,Magnesium:96.6,Total phenols:1.04,Flavanoids:2.55,Nonflavanoid phenols:0.57,Proanthocyanins:1.57,Color intensity:6.2,Hue:1.05,OD280:3.33,Proline:829:

from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
#导入数据集
wine_dataset = load_wine()
#keys:data,target(目标分类),target_names,DESCR(数据描述),feature_names
#三类:class_0:59,class_1:71,class_2:48
X_train,X_test,y_train,y_test = train_test_split(
wine_dataset['data'],wine_dataset['target'],random_state=0)
#训练模型
knn = KNeighborsClassifier(n_neighbors = 1)
knn.fit(X_train,y_train)
X_new = np.array([[13.2,2.77,2.51,18.5,96.6,1.04,2.55,0.57,1.47,6.2,1.05,3.33,820]])
predicition = knn.predict(X_new)
print("预测新红酒的分类为:{}".format(wine_dataset["target_names"][predicition]))

执行结果为:
在这里插入图片描述
模型把新酒的分类预测为class_2,正确率还是很不错的。
总结:KNN算法是一个比较经典并且原理容易理解的一个算法,但是它需要对数据集进行预处理、对于规模较大的数据集拟合时间长、表现不佳。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值