自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

高校图书馆高级系统架构师/研究馆员,推动高校AI从概念演示到可评审、可交付、可运维:路线图与立项评审、PoC交付、评测回归与上线运维(Baseline/Eval/Ops)。

内容覆盖:立项与路线图、架构评审与选型、PoC最小可行交付、评测体系与回归测试、上线运维与可观测治理(Baseline/Eval/Ops)。每篇文章尽量明确“适合谁/交付物/验收方式”,帮助决策层做判断、架构层做设计、实施层能落地。

  • 博客(471)
  • 收藏
  • 关注

原创 专栏导读:你将交付什么、如何学、如何做作品集

这套《Python 进阶:数据分析与 AI 工程实战》专栏旨在帮助你从“会写代码”提升到“能交付项目”。专栏分为多个模块,涵盖了从工程化项目骨架、数据流水线、自动化工具箱,到最终的 AI 工程 Demo(RAG)交付。你将学习如何构建可复现的项目结构,进行数据清洗、性能优化、自动化任务处理,最终将代码变成可交付的工具或应用。每个模块都有明确的学习目标和产出要求,确保你在学习过程中积累可展示的作品集,提升从数据分析到 AI 工程的能力。专栏还强调通过项目骨架、CLI 工具、评估闭环等方法,帮助你避免简单的脚本

2026-01-08 23:11:36 2334

原创 《智元启示录》专栏概览:从“AI 思考集”到“AI 决策内参”的一张行动地图

《智元启示录》专栏聚焦AI领域的实践落地,提供从算法到场景交付的闭环路径。专栏特色包括:1)四条主线(算法底座、大模型工程、产品系统、场景交付)形成完整行动地图;2)强调可验收成果(框架、工具链、清单);3)针对三类读者(工程型、产品型、行业交付者)提供定制化学习路线。通过RAG系统、个人作战中枢、行业模板等里程碑,帮助用户将AI知识转化为可部署、可复现、可验收的实际成果,实现从知道到做到的跨越。

2025-11-11 12:06:38 83

原创 智途领航:从认证到实战,开启AI职业修炼之路

《智途领航 · AI职业修炼与认证成长计划》以“认证+成长+实战”三维体系构建系统化AI学习路径。内容覆盖从入门证书(AZ-900、AI-900)到企业级项目实战,从简历优化到面试策略,帮助AI学习者与职场人士完成从初学者到从业者的跃迁。这里不仅是技术学习手册,更是一场可执行的职业修炼之旅。

2025-02-28 15:31:19 404

原创 提示词工程的5个意外真相:如何像专家一样与AI对话?

摘要: 提示词工程的核心并非编程,而是精准沟通。本文揭示5个关键真相:1)采样控制(温度、Top-K/P)需平衡随机性与确定性,避免死循环;2)后退式提示通过先思考通用原则再解决细节,提升回答质量;3)**思维链(CoT)**分步推理可纠正AI逻辑错误;4)多用正向指令(如“限制140字”)而非负向约束(如“不要写长”),减少模型困惑;5)ReAct模式(思考-行动-观察)结合外部API,使AI能动态解决复杂问题。最终建议通过结构化迭代优化提示词,构建可预测的智能交互系统。

2026-01-26 23:24:43 833

原创 第 7 篇:ComfyUI 电商工作流骨架

本文系统介绍了基于ComfyUI构建的电商素材生产流水线,重点解决电商内容创作中的三大核心需求:风格一致性、规格合规性和批量处理能力。工作流采用四阶段架构:输入校验→主体分离→三分支生成(主图/场景图/详情图)→多渠道裁切导出,通过工程化约束确保输出稳定。 关键创新点包括: 结构化输入规范(PNG+alpha优先、最小分辨率1024、产品元数据) 三分支并行处理策略,保持风格统一的同时满足不同使用场景 母版派生机制实现多渠道适配

2026-01-25 22:07:03 703

原创 第 6 篇:访问控制与零信任策略

本文介绍了基于Cloudflare Zero Trust/Access的内容工厂安全防护方案。核心策略包括:1)管理面板永不裸奔,采用强认证+强条件访问控制;2)Webhook入口单独设置白名单,采用IP限制+服务令牌验证;3)按开发/预发/生产环境分层隔离风险。文章提供了可直接落地的策略蓝图,包含资源分组、规则组设计和环境矩阵配置,并给出检查清单确保安全措施有效实施。通过将认证授权前置到网络边缘,实现精细化权限管理,保护系统核心入口安全。

2026-01-25 21:50:31 813

原创 第十六章 迭代器与生成器:处理大数据的第一步

本章介绍了迭代器与生成器在处理大数据时的关键作用。核心思想是将"批量一次性处理"转变为"流式逐条处理",通过惰性计算显著降低内存占用。重点内容包括:1) 区分可迭代对象、迭代器和生成器的概念;2) 使用yield构建可组合的数据处理管道;3) 展示从文件读取到特征转换的完整流式处理链路;4) 介绍批处理实现和itertools工具库的使用技巧。通过生成器分层设计,可实现内存高效、可维护的数据处理流程,适用于日志清洗、模型推理等大数据场景。

2026-01-24 22:09:47 1062

原创 第十五章 字典与哈希:高效索引与去重

本文深入讲解了字典与哈希表在数据工程中的核心应用,重点解决高效索引与去重问题。主要内容包括:1)字典O(1)查找原理与哈希表工作机制;2)dict/set在索引构建(主键索引、分组聚合、倒排索引)和去重(值去重、行去重、组合键去重)中的典型应用模式;3)处理不可哈希对象的工程方法(tuple转换、JSON序列化);4)哈希碰撞的工程应对策略与稳定指纹生成技术。通过具体代码示例展示了如何将理论转化为可落地的工程实践,帮助开发者避免常见性能陷阱,提升数据处理效率。

2026-01-24 21:57:55 1116

原创 第十四章 代码质量清单:从“能跑”到“可交付”

本文提出了一份提升代码质量的交付清单,旨在将数据分析与AI项目从"能跑"升级为"可交付"的标准。文章将"可交付"拆解为四个层级:能跑、可复现、可验证和可运维,并针对每个层级给出了具体实施建议。核心内容包括:规范项目结构、编写清晰README、统一代码风格、建立测试体系、明确接口类型、分层错误处理、完善日志配置、管理依赖环境等。最后提供了一份可直接用于Code Review的检查表,强调工程化的本质是降低沟通成本、控制变更风险,使交付流程标准化。

2026-01-23 05:43:03 683

原创 第十三章 性能意识入门:你代码慢在哪?profiling 的工程化思路

本文介绍了数据分析与AI工程中的性能优化方法,重点讲解了如何通过profiling工具定位代码性能瓶颈。主要内容包括: 建立性能意识框架:通过度量-优化-验证的流程系统性地解决性能问题 三类瓶颈识别:CPU-bound、IO-bound和Memory-bound的判断方法 最小profiling工具链:包括time、cProfile、line_profiler和memory_profiler的使用 常见性能陷阱:

2026-01-23 05:22:46 834

原创 第 5 篇:Cloudflare Tunnel 多服务路由模板

本文介绍了如何通过Cloudflare Tunnel实现多服务路由配置,重点讲解了config.yml文件的设计原则和最佳实践。文章建议按功能划分4类子域名(ComfyUI、RAG API、Dashboard、Webhook),并强调必须包含404兜底规则以防止意外暴露。提供了一份可直接复用的配置模板,明确服务应绑定到127.0.0.1以最小化暴露面。同时指出访问控制应与路由分离,不同服务需采用不同安全策略。最后列出了常见配置错误和具体行动项,为后续零信任策略实施打下基础。

2026-01-19 23:08:42 967

原创 第 4 篇:为什么选择 Cloudflare Tunnel——在“无公网 IP + 零端口暴露”前提下,把家里 Mac 变成可交付的线上服务

Cloudflare Tunnel 通过出站连接将本地服务安全暴露至公网,无需公网IP或端口转发。其核心优势在于: 安全边界转移:攻击面从家庭网络迁移至Cloudflare边缘层,配合WAF/Access策略防护; 分层访问控制:按场景划分域名(如demo.*公开演示限速、ops.*强制MFA认证、api.*机器身份校验); 零端口暴露:通过cloudflared主动建立持久隧道,彻底规避CGNAT限制。 关键实践:管理面板强制MFA、Webhook必验签、API使用服务令牌,并默认404兜底。

2026-01-19 22:57:49 1447

原创 第 3 篇:服务编排与自启动——把 Mac 变成“稳定可运维”的家庭 AI 机房

本文介绍了如何在Mac上搭建稳定可运维的家庭AI机房,重点解决服务自启动、健康检查和灰度发布等关键问题。文章将服务分为三类(ComfyUI、RAG API和面板服务),建议通过launchd实现生产级托管,并强调端口治理、日志落盘和健康检查的重要性。提供了灰度发布的双端口策略和回滚清单,最后给出7步落地行动项,包括端口登记、健康检查接口和演练回滚流程。文章旨在帮助读者构建断网/重启后仍能自动恢复的稳定AI服务环境。

2026-01-18 21:42:37 856

原创 第2篇:本地目录与资产标准(把“素材—文案—对话—上架”变成可追溯的生产线)

本文介绍了构建电商AI自动化系统的核心资产目录标准,提出通过统一目录结构、命名规范和版本策略实现资产可追溯与系统可回滚。文章建议采用SKU根目录分级管理,实施四段式命名(SKU__类型__渠道__版本),并强调单一事实源(SSOT)的重要性。关键点包括:建立元数据文件作为"真相源"、区分工作版本与发布版本、确保所有输出结构化存储。文末提供可直接落地的检查清单,涵盖目录创建、命名规范、版本控制等7项具体措施。这种标准化方法使AI工具间的自动化协作成为可能,为后续的服务编排打下基础。

2026-01-17 07:21:50 853

原创 第1章|为什么用 Mac M2 Ultra 做家庭电商 AI 主机:把“算力”变成“可交付的产线”

本文围绕“家庭私有 AI 生产机房”的工程目标,比较京东报价下四套设备:Mac Studio M2 Ultra(¥18000,24+60核/64G/1T)、M2 Max(¥19000,12+30核/32G/4T)、ROG 枪神9 Plus 5070Ti(¥16000,U9+5070Ti/32G/1T)与金河田 i9+4090 台式机(¥12000,32G/1T),从 RAG 常驻服务与 ComfyUI 批量内容工厂两类负载出发,强调稳定常开、多服务并发、资产归档与安全入口(Cloudflare Tunnel

2026-01-16 23:33:43 1438

原创 第0章|栏目简介:把 Mac M2 Ultra 变成“家庭私有 AI 生产机房”

本文介绍如何将Mac M2 Ultra打造成家庭私有AI生产机房,构建电商自动化生产线。系统采用三层架构:本地算力层(Mac M2 Ultra运行ComfyUI、RAG等)、安全入口层(Cloudflare Tunnel零端口暴露)和智能编排层(Make AI Agents任务调度)。专栏将提供24章详细教程,交付包括部署蓝图、安全配置模板、内容工厂方法论等工程资产,帮助用户实现可交付、可运维的AI生产系统。适合电商团队、独立创业者及AI工程实践者,重点关注批量生产、可控一致性和系统化设计。

2026-01-16 23:15:21 993

原创 第 3 篇:方案写作——SOW / 里程碑 / 验收标准 / 风险假设的标准模板

方案写作实战指南:SOW/里程碑/验收标准模板 本文提供高客单价项目的方案写作框架,解决需求变更、验收扯皮等常见问题。核心交付物包括: SOW标准模板:包含项目范围、交付清单、验收标准、风险假设和变更机制,特别强调定价策略的三种选项(固定价/工时制/PoC先行)。 里程碑拆解方法:采用PoC→MVP→Prod三段式,每个阶段明确目标、产出和验收证据,提供6要素写作模板。 验收评分量表(Rubric):将主观验收转化为可量化的4维度评分(功能/质量/性能/安全),总分12分制设定明确通过标准。

2026-01-15 22:03:57 1294

原创 第 2 篇:Upwork 高客单任务读单法——从一句需求还原真实系统

本文针对Upwork高客单价项目中的模糊需求(如“构建AI聊天机器人”),提出一套结构化“读单法”,通过三件套交付物将需求转化为可落地方案: 需求澄清问卷(15问):从目标、用户、数据、验收等维度收敛范围; 技术评估模板:快速判断数据可用性、技术路线及验收标准; 风险清单:覆盖权限、幻觉、成本等高频翻车点。 核心逻辑在于将“功能描述”拆解为工程约束(范围/验收/风险/责任),避免因需求不确定性导致返工。最终目标是通过标准化流程,从“写代码”升级为“交付负责人”,提升高客单项目的成交率与交付成功率。

2026-01-15 21:51:13 1557

原创 第十一章 错误处理体系:异常分层与可恢复策略

数据与AI工程中的体系化错误处理 本文提出了一套针对数据与AI工程的错误处理体系,通过异常分层与可恢复策略实现可控的失败机制。系统将错误分为三层:领域层(数据校验等不可恢复问题)、应用层(流程编排策略)和基础设施层(可恢复的外部依赖问题)。文章推荐采用指数退避+抖动的智能重试策略,并强调降级机制的重要性。针对批处理场景,建议使用"失败预算"决策模型,在失败率超标时终止流程。通过统一的异常分类和处理策略,使系统具备故障定位、统计和追踪能力,实现从临时补丁到系统行为的转变。

2026-01-14 19:16:59 1043

原创 第十二章 类型标注与可读性:让协作与复用更容易

摘要: 本章探讨类型标注在数据/AI工程中的实践价值,旨在提升代码可读性与协作效率。核心观点包括: 必要性:数据工程中“形态错误”比逻辑错误更隐蔽,类型标注能显式约束数据格式,避免隐性错误。 实践方法: 使用 TypedDict 规范字典结构,dataclass 稳定返回值。 通过函数签名(如 Iterable[str] -> list[str])明确输入输出。 结合命名规范(如 raw_df)、函数拆分(parse_*/transform_*)提升可读性。 工具链:推荐 mypy/pyright 静

2026-01-14 19:15:38 960

原创 第十章 面向复用的工具库:utils 的设计与拆分

构建可复用工具库的最佳实践 本文探讨如何设计可持续维护的Python工具库(utils),重点解决数据分析/AI项目中工具函数失控的问题。核心观点包括: 明确边界:工具库应是基础设施层,提供跨模块复用的通用能力,不包含业务逻辑或环境依赖。 结构化拆分:按变化频率和依赖方向组织工具库,保持"稳定层"(如路径处理)与"易变层"分离,避免反向依赖业务模块。 工程化设计: 函数签名清晰明确 默认值保守安全 异常处理透明 副作用可见可控 关键测试:使用pytest针对边界

2026-01-14 18:52:34 756

原创 第九章:函数接口设计:输入 / 输出 / 边界条件

本文探讨了函数接口设计在长期代码维护中的关键作用。文章提出接口设计应包含四部分契约:输入规范、输出保证、边界条件处理和副作用说明。重点讲解了输入设计的数据形状明确性、快速失败原则,输出设计的结构稳定性和可序列化要求,以及针对空数据、缺失值等常见边界条件的三种处理策略(严格模式、宽松模式、显式状态)。通过实战案例展示了良好接口设计如何提升代码可测试性和可维护性,并建议将接口设计与pytest测试结合,形成可维护的工程实践。最后给出三条核心规则:先写契约、统一边界策略、尽早校验。

2026-01-13 23:50:42 747

原创 第八章 单元测试入门:pytest 让代码“可长期维护”

本文介绍如何使用pytest为数据/AI工程编写单元测试,提升代码可维护性。内容涵盖: 核心痛点:数据工程常见隐患(类型漂移、字段缺失等)需通过测试提前暴露。 pytest优势:语法简洁(assert直接验证)、支持参数化(@parametrize)和测试数据管理(fixture)。 关键实践: 优先测试边界条件(如分母为零、空值)。 用pytest.approx避免浮点数比较问题。 分层测试策略(单元→集成→回归测试)。 落地建议:每修一个Bug补一个测试,逐步构建“测试保险”。

2026-01-13 23:40:20 691

原创 第1章 栏目总览:成果型 Upworker 的能力地图与交付闭环

本文从 Upwork 高客单 AI 项目出发,提出“成果型 Upworker”核心不是会写 prompt,而是能交付可验收、可运维的结果。给出能力地图四块:读单与方案、工程化实现、质量与可信、合规与运维,并用九步交付闭环串起从澄清需求到复购迭代的流程。强调先建立评测基线(Recall@K、引用覆盖、不完整率)再优化,避免“玄学调参”。专栏每篇沉淀可复用资产(SOW、评测、Runbook、Schema),帮助涨价与提案通过率。

2026-01-12 23:00:45 766

原创 第七章 断点调试:VSCode 调试全流程(含常见坑)

文章以“工程交付”的视角系统讲解 VSCode 的断点调试全流程,强调排错应从“盲猜 + print”升级为“进入现场 + 证据链”。作者提出调试效率来自“稳定目录结构 + 可控配置 + 可追溯日志 + 断点调试”的组合,并给出可复用的 launch.json 配置模板,覆盖脚本入口、模块(python -m)模式与 pytest 单测调试三类常见场景。文章进一步总结断点调试的关键操作(Step Over/Into/Out、Watch、Call Stack)与数据工程中特别有效的条件断点技巧,并提供数据项目

2026-01-12 21:09:58 790

原创 第六章 日志体系:logging 让排错效率翻倍

本文介绍了如何从低效的print调试升级为工程化的日志体系,提升排错效率。主要内容包括: 工程日志的核心价值:实现可定位、可追溯、可验收的排错证据链 print调试的缺陷:不可分级、难追踪、无法收敛 标准解决方案: 统一日志配置(控制台INFO+文件DEBUG) 自动生成runs/<ts>/log.txt 模块化使用logging.getLogger(__name__) 最佳实践: 数据工程各阶段的必记录点 异常处理时自动记录堆栈 与runs目录形成完整证据链 通过这套体系,

2026-01-12 21:03:53 756

原创 第五章 配置管理:用 YAML/ENV 让项目可迁移

摘要:配置管理工程化实践 本文介绍了数据分析/AI项目中配置管理的关键方法,通过YAML和ENV文件实现项目可迁移性。主要内容包括: 问题背景:分析"硬编码参数"导致项目难以迁移和复现的问题 配置分类原则: YAML管理可公开的版本化配置(数据路径、清洗规则、模型参数等) ENV管理敏感信息和环境差异(API密钥、数据库连接等) 工程实践: 推荐目录结构 结构化YAML编写规范 ENV文件安全规范 统一配置加载器的实现(支持YAML+ENV覆盖) 核心价值:使同一代码能在不同环境稳定运行

2026-01-12 21:00:19 1044

原创 第一篇 从“藏书楼”到“智能节点”:AI 赋能图书馆与知识服务的全景导览

专栏聚焦AI技术如何改变图书馆的角色定位与服务模式。作者作为兼具图书馆工作、信管专业背景和系统架构经验的研究者,提出AI赋能的三个层面:多语种检索能力提升、工作流程优化和服务模式转型。专栏内容分为架构系统、多语种服务、学科支持和实施路径四条主线,针对馆员、教师、开发者和学生等不同角色提供实用指南。文章强调AI应作为渐进式建设的能力而非短暂风口,帮助图书馆从传统借阅场所升级为连接多语种、跨学科知识的智能节点。

2026-01-10 09:21:48 594

原创 第四章 项目目录结构:src/、configs/、data/、tests/ 的黄金布局

摘要 本文介绍了构建高效可维护的数据分析/AI项目的黄金目录结构,以解决常见的脚本混乱、文件冗余和复现困难等问题。核心布局围绕src/(核心代码)、configs/(参数配置)、data/(分层数据管理)和tests/(最小测试)四大目录,辅以runs/和reports/实现闭环。 关键设计原则: 模块化:src/集中可复用逻辑,Notebook仅调用不包含核心代码 可迁移性:configs/分离参数与代码,支持多环境配置 数据分层:data/划分为raw/interim/processed/externa

2026-01-10 08:20:53 1032

原创 第三章 虚拟环境与依赖锁定:pip/venv/requirements 的正确姿势

本文针对Python项目环境管理中的常见问题,提出规范化解决方案。核心观点包括: 虚拟环境是项目隔离的基础(venv),避免依赖污染; 依赖锁定需通过pip freeze生成精确的requirements.txt,确保可复现性; 工程实践推荐分requirements.in(手动维护)和requirements.txt(自动生成)两文件; README必须明确环境协议(Python版本、安装命令等)。 通过规范venv创建、pip安装、依赖锁定和文档说明,可将项目从“个人能跑”升级为“团队可复现”

2026-01-10 08:00:10 1090

原创 第二章 从脚本到工程:进阶学习的 5 个方法论(可维护性/可复现/可评估/可扩展/可交付)

本文探讨了如何将Python脚本升级为可交付的工程项目,提出了五个关键方法论:1)可维护性:通过模块化设计和清晰文档提升代码结构;2)可复现性:使用虚拟环境和版本控制确保结果一致;3)可评估性:建立指标体系与错误分析机制;4)可扩展性:采用解耦设计和策略模式适应变化;5)可交付性:通过自动化报告和容器化技术实现项目移交。这些方法帮助开发者从临时脚本转向可长期维护的工程化项目。

2026-01-08 23:26:33 1062

原创 第二十章 入门到进阶:必须掌握的 7 个能力

本文提出Python学习者从“会写代码”到“能交付项目”需掌握的7项核心能力: 目标翻译:明确可测量的目标与验收条件; 数据契约:版本化与结构化数据管理; 代码模块化:从脚本到可维护的包化组织; 实验复现:环境、参数与产物的标准化记录; 评测闭环:建立基线模型与多维度评估; 解释性报告:工程与业务双语言表达结论; 上线思维:封装为可调用服务或API原型。 作者强调,这些能力构成项目交付的完整闭环,而非单纯语法积累,并将在专栏中提供实操模板,帮助读者实现从实验到产品的跃迁。

2026-01-08 22:55:22 890

原创 第十九章 代码组织:模块化与包

科研代码组织指南:从混乱脚本到可复现研究资产 本文针对科研数据分析中常见的代码混乱问题,提出模块化与包化的解决方案。核心观点包括: 科研代码应具备可复现、可维护、可协作三大特性 推荐采用分层结构:notebooks负责实验编排,src存放核心逻辑,runs保存实验产物 提供标准化项目模板,包含数据、源码、测试、脚本等规范目录 强调配置管理、最小测试策略和Notebook使用原则 列举常见陷阱如utils膨胀、路径硬编码等问题 文章主张科研初期就建立工程规范,避免后期技术债务积累,使代码成为可靠的研究资产而非

2026-01-07 22:47:48 1167

原创 第十八章Notebook 工作流:可复现实验与科研记录

本文提出了一套可落地的Notebook工作流,旨在解决科研与工程项目中的可复现性问题。核心原则是Notebook应为"两周后的你、合作者和审稿人"而设计。文章确立了三条验收标准:一键复现、可追溯和可审阅,并详细介绍了七项实施策略: 构建标准项目结构,分离Notebook叙事与核心逻辑 使用uv或Conda锁定依赖环境 通过Jupytext实现Notebook文本化,支持版本控制 利用Papermill实现参数化实验。

2026-01-07 22:40:50 772

原创 第十七章 调试与排错:读懂 Traceback 的方法论

科研Python调试的核心在于快速定位和解决错误。本文提出了一套通用Traceback阅读方法论,强调错误不是惩罚而是线索。关键步骤包括:识别错误类型,定位代码行,检查数据类型和结构,回溯数据变化。常见错误如KeyError、TypeError、ValueError多源于数据问题而非代码逻辑。科研调试应避免“试到不报错”,而是确保代码行为与预期一致。通过系统化调试流程,可显著提高排错效率,减少时间浪费。

2026-01-06 22:39:47 1196

原创 第十六章:小项目 2 CSV → 清洗 → 统计 → 图表 → 报告输出

本章通过一个完整的数据分析项目,演示了从原始数据到科研报告的完整流程。项目使用学生成绩数据,涵盖数据读取、缺失值处理(中位数填充)、异常值检测(IQR方法)、统计分析(描述统计与相关性分析)及可视化(散点图)等关键步骤。重点强调科研级数据分析的可解释性、可复现性和交付性,包括数据清洗原则、结果导出(CSV文件)和结构化报告撰写(包含方法说明、统计结果与可视化分析)。本章旨在帮助读者建立标准化的数据分析流水线思维,提升科研报告输出能力。

2026-01-06 22:28:47 1053

原创 第 十五 章 可视化入门:Matplotlib 做出像样的图

本文介绍了使用Matplotlib进行科研数据可视化的关键要点。主要内容包括:1)推荐面向对象的绘图方式(fig/ax模型)以实现稳定控制;2)详细讲解6种科研常用图表(折线图、散点图、直方图、箱线图、柱状图、误差棒图)的绘制方法;3)强调科研图的三大标准:信息清晰、统计正确、可直接复用;4)提供8个优化细节建议,包括标题、坐标轴、网格等要素;5)介绍字体兼容性和矢量格式导出(PDF/SVG)等实用技巧。文章强调科研可视化要避免亮但不可信的陷阱,建议建立标准化绘图模板以提高论文图表质量和工作效率。

2026-01-05 22:38:57 1162

原创 第十四章:数据合并:merge / join(Pandas)

本文介绍了Pandas中数据合并的核心方法merge/join/concat的区别与使用场景。重点讲解了pd.merge()的4种连接方式(inner/left/right/outer),以及处理科研数据合并时的关键问题:重复键检查、列名冲突解决、数据类型一致性验证。文章强调科研数据合并应遵循"先核对再合并"原则,推荐使用outer+indicator进行质量检查,并通过validate参数明确表间关系。同时提供了合并前后的检查清单,包括行数验证、缺失值处理和重复键检测等关键步骤.

2026-01-05 22:17:53 1025

原创 本地部署 DeepSeek R1(0528):从“能跑”到“可用、可管、可扩展”的私人 AI 助手指南

本文提供了一份本地部署DeepSeek R1大模型的实用指南,强调从"能跑"到"可用、可管、可扩展"的转变。文章对比了两种部署路线:Ollama+Open WebUI适合个人快速搭建私人助手(支持8B-70B模型),vLLM方案则面向高吞吐服务化需求(支持FP8/FP4量化)。关键建议包括:选择适合硬件的模型尺寸(推荐8B/14B)、控制上下文长度以优化性能、通过Open WebUI构建知识库系统,并提醒注意数据分级与权限边界。部署完成后可应用于文档处理、代码辅

2026-01-04 22:52:25 2457 2

原创 海光DCU部署全攻略:开箱、配置到AI训练的最佳实践|2026工程化版本

海光DCU部署工程化实践指南 本文系统梳理了海光DCU加速卡的部署方案,提出两条核心路径: 生产优先路线:推荐OpenCloudOS 9+6.6内核+DTK 25.04.2原生适配方案,通过RPM包管理实现稳定运维 兼容存量路线:针对Ubuntu 20.04环境,强调版本锁定、容器封装和工程护栏三件套 部署关键步骤: 硬件验收(设备识别、管理工具链验证) 驱动安装验证(hy-smi) DTK环境配置(rocm-smi) AI框架选择(PyTorch/Paddle等)

2026-01-04 22:50:10 1233 1

图书馆 AI 设计可交付方案包

文章:《一人也能做“图书馆 AI 设计团队”:把出图变成可复用的工程流水线(含 Style Lock / 导视体系 / Prompt 日志)》资源包 适用人群:图书馆空间改造、导视升级、AI 出图需要稳定交付的个人/团队 你会得到: 可复用工程目录(含 Brief/Style Lock/Prompt 库/日志/交付模板) 图书馆专用:用户旅程、分区清单、约束字段表、导视系统牌型全套模板 版本策略 V0–V3、A/B 迭代模板、回滚变更记录 直接可用的 PPT/PDF 交付大纲 + 交付索引表

2026-01-02

一人公司·作战中枢 OS(Notion 模板资源包)

把 Notion 变成“一人公司作战中枢”:你每天只打开一个 Dashboard,就知道本周目标、今日三件事、阻塞点、下一步动作与本周必须交付的唯一 KPI。 Notion-OPS-OS-SSOT7-v1.0.0/ README.md CHANGELOG.md LICENSE product/ CSDN_商品页文案.md 预览图_拍摄清单.md 预览图_生成提示词.md docs/ SOP_每日运行.md SOP_周复盘.md SOP_状态机使用.md SSOT_七库说明.md csv/ ssot7_field_dictionary.csv 30_day_bootcamp_plan.csv

2026-01-01

一个智能化农业服务系统

一个智能化农业服务系统,实现作物病虫害的智能诊断与精准防治,引领农业管理从"经验驱动"向"数据驱动"的变革。 核心功能 安全认证系统 - **JWT双令牌认证**: 访问令牌 + 刷新令牌机制 - **角色权限管理**: RBAC权限控制 (管理员/专家/普通用户) - **账户安全**: 密码强度验证、登录失败锁定、令牌黑名单 - **会话管理**: 安全的会话配置和自动令牌刷新 AI智能诊断 - **图像识别**: 基于 Langflow + Google Gemini 的智能病虫害识别 - **多参数诊断**: 支持作物类型、生长阶段、环境条件等参数 - **实时分析**: 上传图片后即时获得AI诊断结果 - **准确度评估**: 置信度评分和结果可靠性分析 可视化展示 - **响应式仪表板**: 统计数据、快速操作、使用提示 - **诊断结果展示**: 病害类型、严重程度、影响面积 - **处理建议**: 治疗方法、预防措施、跟进建议 - **历史记录**: 诊断历史查看和报告下载 企业级安全 - **API安全**: CORS配置、速率限制、安全头设置 - **数据保护**: 敏感信息加密、SQL注入防护 - **审计日志**: 完整的操作记录和错误追踪 - **部署安全**: HTTPS强制、安全Cookie、CSP策略

2025-07-21

AI 的智能职业规划助手

一个基于 AI 的智能职业规划助手系统,结合用户画像和实时市场数据,提供个性化的职业发展建议和精准职位推荐。通过智能对话和职位匹配算法,帮助用户制定科学的职业发展路径。 核心特性: - 智能用户画像: 多维度收集用户背景信息,构建完整职业档案 - AI 对话咨询: 基于 Google Gemini 的智能职业规划建议 - 精准职位推荐: 使用向量相似度算法进行职位匹配 - 实时数据分析: 结合市场趋势提供数据驱动的建议 - 响应式设计: 支持桌面端和移动端的完美体验

2025-07-21

AI驱动的法语学习平台 - 您个性化的法语精通之路

功能: **CEFR水平评估** - 涵盖A1-B1级别的智能15题评估 - 多维度评分(语法、词汇、理解) - 自适应难度递进和置信度评分 - 详细解释和学习建议 **个性化学习地图** - 基于SVG的可视化学习路径和交互节点 - 完成百分比的进度跟踪 - 基于用户表现的动态路径适配 - 优美的法式主题设计和文化元素 **互动学习模块** - 完整的课程系统,包含多种题型: - 选择题 - 填空练习 - 翻译挑战 - 音频发音练习 - 实时评分和即时反馈 - 提示系统和详细解释 - 进度庆祝和成就跟踪 **AI导师聊天界面** - 24/7 AI辅导,提供情境化法语学习援助 - 自然对话流程和智能建议 - 基于用户级别和进度的个性化回应 - 语音输入/输出支持(UI就绪) - 涵盖语法、词汇和文化的综合知识库 **仪表板和进度跟踪** - 包含统计数据的综合学习仪表板 - 进度可视化和成就系统 - 用户资料管理和CEFR级别跟踪

2025-07-21

Clona AI - 个人IP商业化引擎

Clona AI 是一个基于人工智能的个人IP商业化引擎,帮助创作者通过多模态AI技术生成高质量的内容,提升个人品牌影响力和商业价值。 核心功能: 1.多平台内容生成: 支持小红书、微博、文章、产品介绍等多种内容类型 2.智能RAG检索: 基于向量数据库的检索增强生成 3.个性化定制: 可配置的生成参数和风格设定 4.内容分析: 智能内容质量评分和优化建议 5.安全可靠: 企业级安全架构和数据保护

2025-07-20

多智能体协作知识挖掘平台

AI炼金术师是一个- 通过AI智能体对话挖掘和结构化隐性知识(从用户的经验和知识中挖掘出隐性、难以言喻的洞察) 核心特性: 1.三智能体协作: Inquisitor(提问者) + Expert(专家) + Synthesizer(综合者) 2.智能知识挖掘: 从模糊想法到结构化知识的完整流程 3.实时对话展示: WebSocket实时显示AI思考和对话过程 4.现代化界面: 基于IBM设计语言的清爽用户体验 5.高性能架构: 异步处理、缓存优化、容器化部署 6.工作流可视化: Langflow图形化流程设计和管理

2025-07-20

AI驱动的桌面虚拟化平台

AI驱动的桌面虚拟化平台 核心特性: 安全认证 - JWT令牌认证和会话管理 虚拟机管理 - 创建、启动、停止虚拟桌面环境 AI助手 - 自然语言指令管理虚拟机(如"帮我创建一个Ubuntu开发环境") 现代UI - 模仿IBM风格的简洁现代界面 实时交互 - 响应式设计,实时状态更新

2025-07-20

PersonaCraft 人设工坊 + AI内容创作平台

PersonaCraft是一个革命性的AI内容创作平台,通过智能学习您的写作风格和知识储备,为小红书、抖音等中国本土平台生成个性化的高质量内容。 特色功能: 一键生成: 只需提供一个灵感,AI即可生成完整的创作内容 个性化人设: 系统学习您的写作风格,确保内容符合您的独特声音 多平台适配: 专为小红书、抖音、知乎、微博等平台 优化智能重写: 支持对生成内容进行智能优化和调整 三步创作: 简洁的三步引导式创作体验

2025-07-19

BrandCraft品牌工坊

BrandCraft品牌工坊完整实现代码

2025-07-18

从0到1:用Gemini和PGVector构建你的企业级RAG智能问答系统

项目概述 基于检索增强生成(RAG)架构的高校智能问答系统,旨在为高校提供智能化的文档问答服务。系统支持多种文档格式上传,通过向量化技术实现语义检索,结合Google Gemini Pro大语言模型生成准确的答案。 核心特性 智能问答: 基于RAG架构,结合向量检索和大语言模型 多格式支持: 支持PDF、DOCX、XLSX、TXT等文档格式 语义检索: 使用pgvector扩展实现高效的向量相似度搜索 流式响应: 支持答案的实时流式输出 现代UI: 类ChatGPT的用户界面,简洁易用 安全可靠: 完整的用户认证和权限管理 高性能: 支持高并发访问和缓存优化

2025-07-18

高校智能问答系统 + langflow + pgvector + gemini

项目概述 基于检索增强生成(RAG)架构的高校智能问答系统,旨在为高校提供智能化的文档问答服务。系统支持多种文档格式上传,通过向量化技术实现语义检索,结合Google Gemini Pro大语言模型生成准确的答案。 核心特性 1.智能问答: 基于RAG架构,结合向量检索和大语言模型 2.多格式支持: 支持PDF、DOCX、XLSX、TXT等文档格式 3.语义检索: 使用pgvector扩展实现高效的向量相似度搜索 4.流式响应: 支持答案的实时流式输出 5.现代UI: 类ChatGPT的用户界面,简洁易用 6. 安全可靠: 完整的用户认证和权限管理 7.高性能: 支持高并发访问和缓存优化

2025-07-18

从零开始的深度学习优化器:揭示参数更新背后的数学

从零开始的深度学习优化器:揭示参数更新背后的数学

2025-03-23

COVID19 Global Forecasting competition top 10 98%

kaggle 竞赛 COVID19 Global Forecasting (Week 5),高手代码

2025-01-19

Python实现线性回归及其在房价预测中的应用

内容概要:本文详细介绍了线性回归的基本原理、Python实现方法以及模型的评估与调优技巧,并通过一个房价预测的实际案例进行了实战演练。具体内容包括线性回归的数学公式、参数估计方法、模型的创建与训练过程、预测与评估方法,以及特征工程和正则化技术的应用。 适合人群:初学者和有一定Python编程基础的数据科学爱好者,以及希望深入了解线性回归原理和应用的研究人员。 使用场景及目标:本文适合用于教学、项目实战和技术研究。具体目标包括:①掌握线性回归的基本概念和数学原理;②学会使用Python和scikit-learn库实现线性回归模型;③理解模型评估与调优方法,提升模型性能;④通过实战案例加深对线性回归应用的理解。 其他说明:本文不仅提供了理论知识,还结合实际案例展示了从数据准备到模型评估的完整流程。同时,文中提到的特征工程和正则化技术可以进一步提高模型的准确性和鲁棒性。

2024-12-23

AI助力打造专业旅行视频:从创意到后期的全过程

内容概要:本文详细介绍了利用AI工具快速制作专业旅行视频的全过程,涵盖了创意规划、场景设计、动画制作、声音设计和后期制作等各个环节。首先通过ChatGPT等工具生成创意框架和剧本,再使用FLUX Pro设计高质量视觉场景,Runway为静态场景添加动画,Suno和ElevenLabs生成背景音乐和旁白,最后使用剪映进行视频剪辑和整合。 适合人群:适合视频制作新手、旅行业从业者以及所有对AI视频制作感兴趣的人。 使用场景及目标:通过AI工具的辅助,解决创意瓶颈、技术门槛和时间成本等问题,提高视频制作效率和质量。无论是在旅行业、教育、营销还是娱乐领域,均可利用AI工具制作高质量视频。 其他说明:文章讨论了AI工具的优势和局限性,展望了AI视频制作的未来趋势,分析了其经济影响和伦理考量,并提供了实践建议和案例分享。

2024-12-23

AI工具助力高效旅行视频制作

内容概要:本文介绍了如何利用AI工具(如ChatGPT、FLUX Pro、Runway、Suno和ElevenLabs)快速制作专业级别的旅行视频。首先,通过AI工具激发创意并生成创意框架,帮助新手克服创作困难;其次,使用AI场景设计和动画工具提高视频制作的效率和质量;最后,利用音效和剪辑工具增强视频的整体效果。文章还讨论了AI工具的优势和局限性,以及未来的发展趋势。 适合人群:适合视频制作新手、旅行业者以及需要快速制作高质量视频的个人或企业。 使用场景及目标:适合希望提高视频制作效率、降低成本、提升视频质量的专业和个人创作者,尤其适用于旅行视频、教育视频、广告视频等领域。 阅读建议:本文详细介绍了多个AI工具的具体使用方法和应用场景,建议读者结合实际项目进行实践,逐步掌握AI工具的应用,从而更好地服务于视频创作。

2024-12-23

AI演进之路:从机器学习到深度学习的关键概念与应用

内容概要:本文系统探讨了人工智能、机器学习和深度学习的关系,深入分析了深度学习的核心概念、优势与挑战,并详细介绍了其在计算机视觉、自然语言处理、语音识别和推荐系统等关键应用领域的实际应用和发展前景。内容覆盖了从AI的起源到现代技术的各个方面,以及具体技术细节如激活函数、损失函数和优化算法等。 适合人群:对人工智能及其子领域有兴趣的研究人员、工程师和技术爱好者,尤其是对深度学习技术有深入了解需求的读者。 使用场景及目标:本文适合用作学术研究、技术培训和项目实施中的参考资料,帮助读者全面了解AI技术的发展脉络,掌握最新的技术和应用场景,以及未来的挑战和机遇。 其他说明:文章不仅提供了理论知识,还结合了大量实际案例,使得读者能够更直观地理解深度学习技术的应用。

2024-12-23

知识图谱技术在数据科学与AI领域的应用及其构建方法

内容概要:本文详细介绍了知识图谱的概念、构建方法、应用场景及其在数据科学与人工智能领域的重要性和潜在价值。首先,文章解释了知识图谱作为一种强大的数据表示方法,如何通过关系连接数据点来描述特定领域。其次,详细描述了知识图谱的基本组成,包括实体、关系、属性和本体,并介绍了构建知识图谱的五个主要步骤:数据收集、实体识别、关系提取、知识融合和知识存储。然后,探讨了知识图谱在搜索引擎、推荐系统、智能助手、商业智能、医疗健康、金融、教育和科学研究等领域的广泛应用。此外,还讨论了知识图谱的维护、评估、隐私和安全问题,以及未来的发展趋势和技术挑战。 适合人群:数据科学家、AI研究人员、技术开发人员、产品经理等。 使用场景及目标:适用于希望通过知识图谱技术提升数据表示能力、提高数据查询效率、增强系统智能的应用开发者和技术管理者。 阅读建议:本文内容全面深入,建议读者逐步学习并结合具体应用场景进行实践,重点关注知识图谱的构建方法和应用场景,以充分发挥其在实际项目中的潜力。

2024-12-23

使用Docker容器化AI项目的入门指南

内容概要:本文详细介绍了如何使用Docker容器化AI项目,包括Docker的基本概念、不同操作系统的安装步骤、常用命令、Dockerfile的编写、镜像的构建与运行,以及最佳实践和技术细节。 适合人群:适用于对Docker有一定兴趣,希望了解如何使用Docker来容器化AI项目的开发人员和技术爱好者。 使用场景及目标:提高项目的可移植性和可扩展性,确保在不同环境中的一致性运行,通过具体实例学习Docker的关键技能和最佳实践。 其他说明:本文通过具体的AI项目示例,展示了如何创建Dockerfile、构建和运行Docker镜像,从而实现项目的容器化。同时,还提供了一些常见的问题解决方法和与CI/CD的集成建议。

2024-12-23

机器学习领域中的逻辑回归:原理、Python实现与垃圾邮件分类应用

内容概要:本文详细介绍了逻辑回归算法的原理、Python实现及在垃圾邮件分类中的应用。文章首先解释了逻辑回归作为一种二分类算法的工作机制,特别是通过Sigmoid函数将线性回归输出转换为概率值的方法。随后讨论了逻辑回归的参数、模型训练目标及其Python实现过程,包括数据预处理、模型训练、评估方法和调优技巧。最后,通过一个完整的垃圾邮件分类案例,展示了逻辑回归在实际问题中的应用。 适用人群:具备一定机器学习基础的数据科学家、AI工程师以及对逻辑回归算法感兴趣的学者和技术人员。 使用场景及目标:本篇文章不仅适合初学者系统学习逻辑回归的理论知识,而且适用于希望提升实际应用能力的技术人员,特别关注逻辑回归在分类任务中的表现。通过案例实践,学习者可以更好地理解和应用逻辑回归算法。 其他说明:学习过程中,重点理解Sigmoid函数的作用及其在逻辑回归中的应用,掌握数据预处理、特征工程等关键步骤,熟悉常用的评估指标和调优技巧,最终完成一个实际的项目实践。

2024-12-23

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除