偏最小乘回归(Partial Least Squares Regression,简称PLSR)是一种多元回归分析方法,它结合了主成分分析(Principal Component Analysis,简称PCA)和多元线性回归(Multiple Linear Regression,简称MLR)的优点。PLSR通过将自变量和因变量投影到新的空间中,提取出与因变量相关性最大的成分,从而实现降维和预测的目的。在本文中,我们将从矩阵理论的角度解释PLSR的原理,并探讨它在脑科学中的应用。
1. PLSR的矩阵理论角度
偏最小乘回归的核心思想是通过最大化自变量和因变量之间的协方差来找到它们之间的最佳关系。假设我们有m个自变量(X)和一个因变量(Y),可以将输入矩阵X表示为一个m×n维的矩阵,其中n是样本的数量。同样,输出矩阵Y可以表示为一个p×n维的矩阵。PLSR的目标是找到一系列的投影向量w和c,使得它们能够最大化X和Y之间的协方差。
PLSR的算法可以分为以下几个步骤:
步骤1:标准化输入矩阵X和输出矩阵Y,使它们的均值为零,方差为一。
步骤2:初始化w为X的第一列,即w1=X[:,0]。然后计算X和Y之间的协方差矩阵Cov(X, Y)。
步骤3