自然语言处理(Natural Language Processing, NLP)是人工智能领域中一项重要的技术,其中问题相似度计算是一个常见的任务。在本文中,我们将使用PyTorch框架来实现中文问题相似度计算。
问题相似度计算可以用于问答系统、文本匹配和推荐系统等应用场景,它可以判断两个问题之间的语义相似度,从而帮助我们理解用户意图。在这个实践中,我们将使用Siamese神经网络模型来完成中文问题相似度计算。
首先,我们需要准备数据集。在这里,我们选择使用Quora Question Pairs数据集,该数据集包含了一系列问题对以及一个标签表示是否相似。我们可以从互联网上下载这个数据集,并将其分为训练集、验证集和测试集。
接下来,我们需要进行数据预处理。这包括中文分词、去除停用词以及将文本转换为向量表示。为了方便起见,我们可以使用开源的中文分词工具,如jieba库。同时,我们还可以使用预训练的词向量模型,例如Word2Vec或GloVe,将词语转换为向量表示。
以下是一个示例的数据预处理代码:
import jieba
import numpy as np
<