K-means聚类算法解析

本文详细介绍了K-means聚类算法的工作原理,包括初始化、聚类分配、更新聚类中心等步骤,并提供了Python实现的示例代码,帮助读者理解并应用K-means算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

K-means聚类算法是一种常用的无监督学习算法,用于将给定的数据集划分为不同的群组。它基于数据点之间的相似性,将数据点聚集在具有相似特征的簇中。本文将详细介绍K-means聚类算法的原理和实现,并提供相应的源代码。

算法原理:

  1. 初始化:根据指定的簇数K,随机选择K个数据点作为初始的聚类中心。
  2. 聚类分配:对于每个数据点,计算其与各个聚类中心的距离,并将其分配给距离最近的聚类中心所在的簇。
  3. 更新聚类中心:对于每个簇,计算其所有数据点的平均值,将该平均值作为新的聚类中心。
  4. 重复步骤2和步骤3,直到聚类中心不再发生变化或达到最大迭代次数。

源代码实现:
下面是用Python实现K-means聚类算法的示例代码:

import numpy as np

def kmeans(X, K
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值