近年来,随着工业化进程的加速和能源消耗的不断增长,准确预测工业用电量对于能源供应和能源规划具有重要意义。本文将介绍一种基于PyTorch LSTM的工业用电量预测模型,并提供完整的代码和数据,供读者参考和运行。
1.引言
工业用电量是指工业生产过程中所消耗的电能数量,对于企业的生产管理、能源成本控制和环境保护都具有重要意义。准确预测工业用电量可以帮助企业合理安排用电计划,优化能源供应链,并且在节能减排方面发挥积极作用。
深度学习在时间序列预测任务中取得了显著的成果,其中长短期记忆网络(LSTM)是一种特别适用于处理序列数据的神经网络模型。本文基于PyTorch框架实现了一个LSTM模型,用于工业用电量预测。
2.数据集介绍
为了构建工业用电量预测模型,我们使用了一份真实的工业用电量数据集。该数据集包含了一段连续的时间序列数据,包括每小时的用电量和时间戳。为了保护数据隐私,我们对数据进行了脱敏处理,但不影响本模型的运行和预测效果。
首先,我们需要加载数据集并进行一些预处理操作,包括数据归一化、序列划分等。下面是完整的数据预处理代码:
import pandas