论文题目:平滑性约束对计算机断层扫描运动补偿的影响
目的:CT运动伪影去除
摘要:
计算机断层扫描(CT)在图像采集过程中依赖于精确的患者固定。然而,重建图像中的运动伪影仍然存在。运动补偿方法旨在纠正采集后的这些伪影,通常在估计的运动模式上结合时间平滑约束。
本文分析了基于样条的运动模型在现有的锥束CT刚性运动补偿算法中对可恢复运动频率的影响。结果表明,运动模型的选择对可恢复频率有重要影响。根据Nyquist-Shannon定理,基于优化的运动补偿算法能够精确地拟合频率几乎达到节点相关的理论极限的样条节点。值得注意的是,较高的节点数不会影响慢动作模式的重建性能,但可以扩展所研究算法的可恢复高频范围。最终,最佳运动模型取决于成像解剖、临床用例和扫描方案,并应仔细定制预期的运动频谱,以确保准确的运动补偿。
Nyquist-Shannon定理,也被称为采样定理,是信息论和信号处理领域中的一个基本定理。它由哈里·奈奎斯特(Harry Nyquist)和克劳德·香农(Claude Shannon)独立提出,描述了在不丢失信息的情况下,对连续时间信号进行数字化采样的最低采样率。
根据采样定理,如果一个模拟信号的最高频率是
,那么为了能够从采样值完全恢复原始信号,采样率必须至少是这个最高频率的两倍,即
。这个条件被称为奈奎斯特率。
采样定理的关键在于,如果采样率低于奈奎斯特率,信号的高频成分就可能与低频成分发生混叠(aliasing),导致无法从采样值准确恢复原始信号。混叠现象是由于采样过程中高频信号的周期性重复,使得它们看起来像是低频信号的一部分。
I. INTRODUCTION
患者运动导致测量的正弦图与重建过程中假设的几何设置之间的不匹配,从而导致重建图像中的伪影。因此,运动补偿方法旨在在后处理步骤中消除这些伪影。
大多数明确估计运动曲线的方法,随着时间的推移对运动模式施加了一种平滑性约束。通常,这是通过向目标函数添加正则化项来实现的,该正则化项隐式地惩罚非光滑运动模式,或者显式地用光滑函数近似运动模式。然而,这些建模决策对可以通过特定方法恢复的运动模式类型的影响