读论文《PROTOTYPE KNOWLEDGE DISTILLATION FOR MEDICAL SEGMENTATION WITH MISSING MODALITY》

论文题目:

缺失模态医学分割的原型知识蒸馏

论文地址:2303.09830 (arxiv.org)

项目地址:https://github.com/SakurajimaMaiii/ProtoKD

摘要

多模态医学成像在临床治疗中至关重要,因为它可以为医学图像分割提供补充信息。然而,由于扫描时间限制和其他临床情况,收集多模态数据在临床上是困难的。因此,开发一种能够处理缺失模态问题的图像分割范式在临床上具有重要意义。本文提出了一种原型知识蒸馏(ProtoKD)方法来解决这一挑战性问题,尤其是当只能访问单一模态数据时最困难的场景。具体来说,ProtoKD不仅可以将多模态数据的像素级知识蒸馏到单模态数据,还可以转移类内和类间特征变化,使学生模型能够从教师模型学习到更稳健的特征表示,并仅使用单一模态数据进行推理。该方法在BraTS基准测试中实现了最先进的性能。代码可在GitHub上获得。

引言

多模态成像在医学图像分析领域具有重要意义,因为它提供了医学诊断的补充信息。尽管多模态成像通常能产生准确的诊断,但由于数据损坏或临床场景中的不同扫描协议,通常很难收集到完整的多模态图像集。因此,迫切需要一种健壮的医学图像分割方法来解决在推理时缺失模态的问题。本文提出了三种主要方法来解决这一挑战性问题:第一种是合成缺失模态以完成测试集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

请站在我身后

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值