linux系统下可用的语音转文字方法(Fish Speech)

本文介绍了FishSpeech,一款高度定制的Linux和Windows支持的文本转语音工具,需要2GBGPU内存,使用Flash-Attn和新更新的Text2Semantic模型。提供了详细的安装步骤,推荐使用Python3最新版本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

推荐一款Linux下可用的,全新的文本转语音(TTS),计算机朗读文本—Fish Speech
Fish Speech具有高度自定义和灵活性,目前支持Linux和Windows系统。
运行需要2GB的GPU内存进行运算,使用Flash-Attn进行推理和训练,支持VQGAN和Text2Semantic模型。
在这里插入图片描述
安装方法:

安装 pytorch

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

安装 flash-attn (适用于linux)

pip3 install ninja && MAX_JOBS=4 pip3 install flash-attn --no-build-isolation

安装 fish-speech

pip3 install -e .

git地址:

https://speech.fish.audio/zh/latest/zh/

可以看到2023/12/17:更新了 text2semantic 模型, 支持无音素模式。非常非常的新,推荐python3环境更新到最新的版本。

### 如何调用 FishSpeech FishSpeech 是一种用于语音处理的框架,其功能涵盖了从语音生成到语义解析再到最终的人声合成。为了成功调用并运行此工具,需按照以下方式操作。 #### 修改配置文件 在启动训练之前,需要调整 `fish_speech/configs/text2semantic_finetune.yaml` 文件中的参数以适配硬件环境,特别是显存大小[^1]。这一步骤对于确保模型能够稳定运行至关重要。 #### 准备工作 根据官方文档结构描述[^2],可以分为以下几个方面来完成准备工作: - **Windows 用户**: 如果您是在 Windows 平台上开发,则应参照 “For Windows User/win用户” 的部分进行必要的初始化设置。 - **Linux 用户**: 对于 Linux 系统下的使用者,“For Linux User/Linux 用户” 提供了详细的指导信息。 随后还需要下载预训练好的模型权重以及相关资源,在这部分内容中提到的是“准备模型”的环节。 #### 使用命令行界面 (CLI) 进行推理 一旦完成了上述所有的前期设定之后,就可以通过命令行来进行实际的数据推断过程: 1. **从语音生成 Prompt** 利用特定脚本或者接口将原始音频信号化为可被后续模块理解的形式。 2. **从文本生成语义 Token** 将自然语言文本映射成抽象表示形式即所谓的 semantic tokens, 可能涉及到复杂的 NLP 处理逻辑. 3. **从语义 Token 生成人声** 基于前面得到的结果进一步构建出对应的语音波形数据. 以下是简单的 Python 调用示例代码片段展示如何加载模型并对输入执行预测任务: ```python from fish_speech import load_model, generate_audio_from_text model = load_model('path_to_pretrained_weights') audio_output = generate_audio_from_text(model, 'Hello world!') ``` 以上展示了基本的功能实现路径,具体细节可能依据版本更新有所变化,请参考最新版的技术手册获取更精确的信息. #### 关于 FishAgent 的补充说明 值得注意的是,虽然这里讨论的主题围绕着 FishSpeech 展开,但是也提到了另一个项目叫做 FishAgent 。它是由 FishAudio 开发的一个端到端语音换解决方案,具备自动语音识别(ASR)文字语音(TTS) 功能,并且正在积极测试当中以便未来应用于更多领域如教育、游戏等领域之中[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值