- 博客(1351)
- 收藏
- 关注
原创 【值得收藏】大模型智能体幻觉研究综述:原理、分类与解决方案
本文是首个针对大语言模型智能体幻觉问题的全面综述,分析了智能体幻觉的类型多样、传播链条长和后果严重等特点,提出创新的智能体幻觉分类体系,识别十八类触发因素,总结十类幻觉缓解方法。文章提出未来研究方向,并开放300余篇相关文献资源,旨在推动更加稳健可靠的智能体系统发展。
2025-10-30 13:36:50
491
原创 AI Agent开发框架对比:LangGraph和LlamaIndex深度解析,看完就能上手,建议收藏!
本文对比了LangGraph和LlamaIndex两大AI Agent开发框架。LangGraph采用基于图(Graph)的编排架构,显式定义节点和边;LlamaIndex则采用事件驱动的编排系统。两者在接口易用性、状态管理、并发支持和streaming等方面存在差异。文章指出,业界对Agent认知存在理想化的自主路线和务实的Workflow升级路线两种思路,随着AI产业落地,这两种路线正在融合。开发者可根据项目需求选择合适框架。
2025-10-30 11:29:39
684
原创 收藏必备:DeepAgents 0.2发布 - 零代码构建能规划、记忆与成长的AI智能体
DeepAgents 0.2版本是一个用于构建具备长期规划、记忆与自主迭代能力的"深层智能体"的Python包。该版本引入了可插拔后端机制,支持多种存储系统组合,并增强了自我管理能力,包括工具结果回收、对话历史压缩等功能。作为LangChain生态的一部分,DeepAgents专注于构建长期运行的自治型智能体,为开发者提供构建下一代AI自主代理的桥梁。
2025-10-30 10:36:56
665
原创 【必学】大模型智能体幻觉问题详解:从入门到精通的收藏级指南
本文是首篇针对大语言模型智能体幻觉问题的全面综述,提出创新分类体系将幻觉分为五类,深入分析十八类触发因素,总结十类缓解方法。文章不仅系统梳理现有研究成果,还指明未来研究方向,并公开300余篇相关文献资源,为解决智能体幻觉这一关键挑战提供全景视角,助力构建更可靠的智能体系统。
2025-10-29 11:56:20
524
原创 【必收藏】Unsloth AI发布Docker镜像,一键解决大模型训练环境配置难题
Unsloth AI推出Docker镜像,简化了大模型本地训练环境配置。用户只需安装Docker和NVIDIA Container Toolkit,通过一行命令即可启动包含完整环境和示例notebook的容器。支持数据持久化和SSH连接,适合团队协作和教学。目前限制包括不支持Mac系统、多GPU训练有限,AMD显卡支持有限。针对Blackwell和RTX 50系列有专门镜像,Docker化显著降低了单卡NVIDIA GPU用户的使用门槛。
2025-10-29 11:34:41
509
原创 程序员必看!零代码微调大模型(LLaMA-Factory)完整指南,建议收藏
本文详细介绍了LLaMA-Factory框架在大模型微调中的全流程使用方法,包括环境配置、数据处理、WebUI零代码微调、SFT训练、LoRA合并、模型推理与评估。通过本文,程序员和AI初学者可快速掌握大模型微调技术,无需编写复杂代码即可完成模型训练和部署,是学习大模型微调的实用指南。
2025-10-29 10:46:36
816
原创 【必学收藏】从判别式到生成式:情感计算与多模态大模型的融合之路
本文探讨了情感计算与多模态大模型的结合,提出了从传统判别式情感识别向生成式情感理解转变的思路。作者团队介绍了EMER、OV-MER、AffectGPT、EmoPrefer和AffectGPT-R1等研究成果,通过构建大规模数据集和优化模型架构,实现了细粒度、可解释的情感理解。这些研究为情感计算领域提供了新思路,并在MER挑战赛中得到应用。
2025-10-28 11:43:47
688
原创 收藏必备:大模型Multi-Agent系统实战解析:如何让企业销售配置从复杂到简单
文章介绍了基于大语言模型的Multi-Agent智能体系统如何解决企业销售配置难题。该系统通过多个专业化AI智能体(规划、配置、供应链、定价等)的协同工作,将原本需要多部门确认的复杂配置过程自动化。系统只需接收自然语言需求,即可在几分钟内输出包含产品配置、库存、价格、交付周期的最优方案。这一技术不仅提高了配置效率和精准度,还实现了从经验驱动到策略驱动的转变,让销售人员回归价值创造本质。
2025-10-28 11:28:51
983
原创 收藏!AI智能体全解析:让大模型从“会说“到“能做“的必学技术
文章系统介绍了AI智能体的概念、特征、与模型区别、类型、应用场景、架构和开发流程。智能体是将大模型从"只会思考"转变为"能行动"的关键,通过感知、记忆、推理和行动形成闭环系统,能自主执行任务。文章还提供了基于DeepSeek和LangGraph的实操案例,帮助开发者理解智能体开发流程。
2025-10-28 11:11:15
650
原创 【必备技能】让大模型帮你查MySQL:MCP协议入门到精通,建议收藏
本文介绍通过MCP协议让大语言模型连接MySQL数据库并执行只读查询的方法。大模型可自动查询数据库信息,如用户登录情况和表分区结构,无需用户编写复杂代码或了解技术细节。这种方法降低了数据分析的技术门槛,使非技术人员也能高效获取数据信息,扩大了数据操作的用户群体,提高了工作效率,真正实现了数据触手可得。
2025-10-27 11:53:23
917
原创 深入理解RAG:数据召回全流程解析,程序员必备收藏指南
本文详细介绍了RAG系统中数据召回的核心流程,包括查询优化、混合检索、结果后处理、对话记忆管理和上下文管理五大模块。系统通过多阶段精细化处理实现精准召回,结合记忆管理和上下文优化确保多轮对话连贯性,具备良好可扩展性,可根据业务场景灵活调整,为大模型应用提供高效知识检索支持。
2025-10-27 11:40:47
994
原创 【值得收藏】AI智能体开发新里程碑:LangChain与LangGraph 1.0全面解析与实战指南
LangChain与LangGraph同时发布1.0版本,标志着AI Agent开发进入工程化阶段。LangChain 1.0提供create_agent抽象、中间件系统和精简包结构,快速构建智能体;LangGraph 1.0作为生产级运行时,支持持久化状态和人在回路机制。两者相辅相成,支持从快速原型到复杂业务工作流的平滑升级。全新统一文档站点为开发者提供完整指南,已被Uber、JP Morgan等企业广泛采用。
2025-10-27 11:26:40
727
原创 必收藏!vLLM大模型推理框架详解:从PagedAttention算法到源码实战,小白也能高效学习
本文深入解析vLLM框架,核心介绍其创新的PagedAttention算法如何通过分块内存管理解决传统推理框架的内存浪费问题。详细讲解了vLLM的三大系统架构(调度、推理、管理)及其工作流程,并对核心源代码进行逐行注释,帮助读者理解vLLM如何通过批量处理、共享前缀和beam search优化,实现高效的大模型推理服务。
2025-10-25 11:54:44
934
原创 别再被Agent忽悠了!程序员必看的Agent工程化思考(收藏版)
文章从软件工程视角回顾了AI Agent的发展历程,指出当前Agent开发面临的现实挑战:上下文窗口过长导致Agent"迷路"。作者提出"微型Agent"解决方案,即在传统DAG流程中嵌入多个职责单一的小Agent。强调Agent工程化需要掌控prompt设计、管理上下文、控制流程和人工干预,应像构建传统软件一样构建Agent,复杂问题简单化,大问题拆小,不确定性最小化。
2025-10-25 11:28:20
554
原创 必藏!小白/程序员必备:大模型开发五大核心组件全解析,从提示词到工具链路详解
文章解析了大模型应用开发的五大核心组件:提示词作为指令输入,Agent作为决策执行中心,大模型提供认知能力,MCP作为标准化连接协议,工具扩展现实交互能力。这五者形成"意图→决策→执行→反馈"的完整闭环,构建了既能思考又能行动的智能系统架构,为开发者提供了系统化的大模型应用开发思维框架。
2025-10-25 11:13:51
851
原创 【值得收藏】GraphRAG全解析:让大模型理解知识全貌,提升问答质量
GraphRAG突破传统RAG局限,将知识组织成图谱结构而非文本块,使大模型能理解实体间关系和逻辑连接。文章详解GraphRAG工作原理(索引构建知识骨架,查询精准找答案),提供Neo4j+LangChain实现代码,并探索与传统RAG混合使用的多代理系统,让大模型从"查字典"升级到"读书",提升复杂问题回答质量。
2025-10-24 11:57:34
1005
原创 【收藏必看】大模型+知识库:企业专属智能体构建指南(附五步实施方案)
企业单纯依赖大模型难以满足业务场景的专业性、准确性要求,传统知识库又缺乏智能交互能力。将大模型的"智能大脑"与知识库的"业务根基"结合,可实现从通用智能到企业专属智能的跃迁。文章提供了知识库建设的五步法规划方案,帮助企业打通"知识-智能-业务"价值闭环,驱动业务降本增效与创新突破。
2025-10-24 11:43:39
924
原创 【必学干货】构建双层记忆架构:让LLM既专注当下又记住历史,小白也能快速掌握的AI代理系统实现指南
本文详细介绍了如何使用LangGraph构建具有双层记忆架构的AI代理系统。通过短期记忆管理单次会话上下文,长期记忆跨会话存储用户偏好和学到的知识,实现代理的持续学习和个性化响应。文章展示了从基础架构搭建到具体代码实现的全过程,包括记忆存储、提示词设计、工具定义和反馈机制,并通过测试案例验证了代理从用户反馈中学习的能力。
2025-10-24 11:06:07
1011
原创 程序员必看!收藏这份小样本+多模态学习指南,小白也能轻松“水一篇”!
文章推荐"小样本学习+多模态"这一高价值研究方向,它结合了少数据高效学习和多模态信息互补的优势,特别适合解决自动驾驶、医学等领域数据稀缺但模态多样的问题。文章提供了12种创新思路和相关论文源码,包括多模态特征对齐、小样本泛化能力等核心问题,帮助研究者紧跟领域前沿,找到论文创新点。
2025-10-23 11:54:52
770
原创 【珍藏教程】Coze+DeepSeek打造智能客服系统,含完整工作流搭建与API集成指南,建议收藏
文章详细介绍如何使用Coze平台和DeepSeek模型搭建AI智能客服系统,包括创建售前问答库、设计智能体工作流(意图识别、问题处理、知识库检索等节点)、调试发布以及API集成到业务系统的完整流程。通过可视化操作即可完成,无需复杂编程,适合小白快速上手,为业务提供24小时智能客服解决方案。
2025-10-23 11:37:23
328
原创 程序员必看:AI已不是选学技能而是生存必备!薪资断层领先,收藏学习
AI已成为程序员的生存必备技能,传统后端岗简历通过率下降40%,而懂AI的程序员薪资逆势涨15%,同工龄平均月薪高8K,大厂AI工程师起薪达传统后端的1.5倍。掌握AI还能延长职业寿命,35+岁仍能参与核心项目。IT从业者转型AI有天然优势,已有编程和分布式系统知识可快速上手AI工程框架。文章强调这不是"要不要学"的选择,而是关乎饭碗和薪资的关键。
2025-10-23 11:11:23
374
原创 AI新范式!DeepSeek-OCR:10倍压缩长文本的技术突破,收藏级干货分享
DeepSeek-OCR虽名含OCR,实则是解决大模型长文本难题的创新技术。"上下文光学压缩"方法将文本转为图像,实现10倍压缩率(保持96.5%准确率),大幅降低计算复杂度。该技术模拟人类记忆衰退特性,实现类似生物遗忘曲线,为AI发展提供新思路——"遗忘"也可能是智慧的重要组成部分。这不仅超越传统OCR,更是对AI信息处理方式的范式革新。
2025-10-22 14:27:33
887
原创 从零开始构建企业级RAG知识库:Dify实战指南+收藏必看的7大关键步骤!
本文系统介绍了基于Dify平台构建企业级RAG知识库的全流程,涵盖双阶段处理架构、智能分块策略、向量存储优化、质量评估体系及实战调优技巧。通过外卖客服案例,详解了如何解决大模型"知识滞后"问题,实现从Demo到生产系统的跨越,帮助开发者掌握检索增强生成的核心方法论,提升RAG系统准确率与业务价值。
2025-10-22 11:23:01
634
原创 【大模型实战】LLM+RAG智能客服知识库构建,文档解析与分割核心技术详解!
本文详细介绍了大模型与RAG结合的智能客服项目中知识库构建的关键技术,重点讲解文档文本解析和分割方法。包括粗细颗粒度处理策略、表格结构化提取与关联处理、图片处理技巧以及批量文档验证方法。通过结合PyPDF2、pdfplumber等工具,实现高效文档切分,提升检索精准度,为智能客服提供更准确的知识支持。适合开发者学习实践。
2025-10-22 10:52:08
923
原创 一文详解!什么是「过拟合」,如何判断,常见的原因是什么?看完这一篇你就知道了!!
过拟合是机器学习中的核心问题,表现为模型在训练数据上表现优异但在新数据上性能下降。本文系统分析了过拟合的成因、诊断方法及理论依据,并提出了正则化、数据增强、Dropout等实用策略。掌握这些技术,可有效提升模型泛化能力,避免陷入"记住数据而非学习规律"的陷阱,对构建稳健的大模型至关重要。
2025-10-21 11:56:44
1097
原创 【必学收藏】DeepSeek开源3B小模型,用“光学压缩“实现10倍Token压缩,OCR准确率97%+
DeepSeek开源的3B模型DeepSeek-OCR采用"光学压缩"创新思路,将文本转换为图像处理,实现10-20倍Token压缩率,同时保持97%以上OCR准确率。模型由DeepEncoder编码器和DeepSeek3B-MoE解码器组成,一块A100显卡每天可生成20万页训练数据。团队还提出模拟人类遗忘机制,为处理超长上下文提供新思路。这一小模型展现了大能力,为LLM和VLM进化开辟了新赛道。
2025-10-21 11:08:08
907
原创 一文讲清!如何用本地LLM+多智能体搭建企业级研究基础设施?从零实现媲美ChatGPT的深度研究工具
本文详细介绍如何构建一个基于多智能体协作的本地化AI研究工具,通过Linkup提供网络搜索能力,CrewAI实现智能体协同,Ollama+DeepSeek-R1作为本地大模型,Cursor+MCP作为交互界面。该系统不仅能实现ChatGPT级别的研究能力,还能确保数据安全和隐私保护,适合处理敏感话题和网络受限环境。文章提供了从环境准备到MCP服务器封装的完整代码实现,并指导如何集成到Cursor编辑器中,为程序员打造了一个可控、安全、可定制的研究解决方案。
2025-10-21 10:27:59
985
原创 万字长文|一文搞懂MCP:AI应用架构设计新范式落地实践
文章详细介绍了MCP(模型上下文协议)的概念、机制及其在AI应用架构设计中的新范式。MCP通过标准化AI应用与外部工具/数据源的交互方式,解决了传统HTTP调用中接口查找和解析的复杂性问题。文章探讨了MCP与Function Calling的区别,分析了企业级应用中面临的挑战,并提出了基于云原生API网关和Nacos的解决方案,包括MCP Server注册中心、动态服务发现等,推动AI应用向更高效、更灵活的架构发展。
2025-10-20 11:37:30
1090
原创 收藏必看:从万能助手到专业团队,多个AI Agents协作的Plan-And-Execute工程本质解析
文章深入探讨了多个AI-Agents协作的工程本质,特别聚焦于Plan-And-Execute模式。通过代码演示,展示了如何使用AgentPlanAndExecute和AgentReAct两个专业AI-Agent实现高效协作。文章指出,多个AI-Agents协作可解决单智能体上下文窗口限制、响应延迟高和复杂任务稳定性差等问题,实现从"万能助手"到"专业团队"的范式转变,使AI任务执行更加高效准确。
2025-10-20 11:14:59
766
原创 必学收藏!AI知识库技术演进:从RAG到Agentic Reasoning,小白也能轻松掌握!
文章对比了AI知识库三种实现方式:传统RAG、Agentic RAG和基于Claude Code的Agentic Full-text Retrieve模式。实践发现,直接访问完整Markdown文件的Agentic reasoning效果最佳,因能提供信息完整性、上下文连贯性和风格一致性,而传统RAG受限于向量检索和chunk切分。GraphRAG虽能发现隐含关联,但效果仍不及直接文件访问模式。不同方案适用于不同场景,需根据实际需求选择。
2025-10-20 10:45:14
723
原创 一文详解智能体应用,使用AI Agent自动生成交互式网课完整指南,零基础也能学会!!
本文介绍了一个可交互的图文网络课程生成Agent,它能根据用户上传的文本资料自动生成包含多个章节、可视化交互页面和多样化习题的完整网课。Agent通过课程信息生成、章节划分、详情创建和习题生成等流程工作,章节详情Agent使用React + JSX实现交互式可视化讲解。未来可加入RAG和试卷生成功能扩展,虽然目前受模型幻觉和成本限制,但AI自动生成网课将是未来趋势。
2025-10-18 11:53:03
539
原创 【干货收藏】知识图谱构建详解:关系型数据转图模型,赋能大模型应用
知识图谱基于图数据库技术,专为处理多样化实体网络设计,性能随规模扩大呈线性而非指数级下降。本文详解关系型数据向图模型的转化、ETL加载过程及示例查询方法。知识图谱通过节点和关系构建业务语义网络,既保留上下文关系又能灵活扩展,不仅解决复杂业务分析难题,也为未来生成式大模型应用奠定基础,是数据建模的重要发展方向。
2025-10-18 11:33:45
709
原创 【干货收藏】告别“事后诸葛亮“:ETH新研究实现大模型生成过程实时幻觉检测
ETH研究团队开发了实时幻觉检测技术,通过训练轻量级线性探针,在大模型生成长文本时即时识别并标记虚构实体。该方法不检测整个句子真假,只识别具体实体的真实性,表现优异且数据可迁移。这项技术标志着幻觉检测从"事后补救"转向"过程监控",对医疗、法律等高风险AI应用场景具有重要价值,团队已将数据集和代码完全开源。
2025-10-18 11:14:22
925
原创 大语言模型微调技术全攻略:从LoRA到LoRA+,一篇搞定,建议收藏!!
本文介绍五种优化大语言模型微调的技术:LoRA通过低秩矩阵减少训练参数;LoRA-FA冻结矩阵A降低内存需求;VeRA共享随机矩阵参数效率最高;Delta-LoRA通过梯度更新W增强表达能力;LoRA+采用不同学习率加速训练。这些技术各有特点,适用于不同资源条件和精度需求,使大模型微调更加高效可行。
2025-10-17 11:57:59
468
原创 想学大模型不知道从哪下手?Happy-LLM大模型完全指南:从NLP基础到亲手搭建LLaMA2
Happy-LLM是一个免费开源的大语言模型原理与实践教程,共7个章节,从NLP基础到动手搭建完整大模型。该项目理论与实践结合,循序渐进,特色是手把手实现Transformer架构和LLaMA2模型,让学习者真正理解大模型底层原理而非仅调用API。
2025-10-17 11:22:28
647
原创 一文详解大模型底层原理揭秘:Transformer架构详解与实战案例,看到就是赚到,建议收藏!!
文章详细解析了大模型的核心架构Transformer,重点讲解注意力机制(QKV计算、注意力权重)和编码器-解码器结构。通过"中国的首都是什么"这一问答实例,展示了从输入分词到输出答案的完整推理流程,包括嵌入层、位置编码、注意力计算、残差连接、前馈网络等关键步骤。这些内容帮助读者理解大模型如何通过注意力机制捕捉全局语义关联,实现精准的语言理解和生成。
2025-10-17 11:04:33
746
原创 多少做RAG的人,连分词都搞不定?如何避免大模型误解专业术语?Milvus分词器实践指南
本文详解Milvus Analyzer如何解决全文检索中的分词问题,避免大模型误解专业术语。文章介绍了Analyzer的核心组件(Tokenizer和Filter)、三种Analyzer类型(内置、多语言、自定义)及代码实践。通过正确配置Analyzer,可解决"无线电法国别研究"被错误分割等问题,提升大模型对专业术语的理解准确性,实现高效全文检索。
2025-10-16 11:36:53
606
原创 一文搞懂MCP模型上下文协议,让AI轻松连接外部世界,收藏这一篇就够了!!
MCP是Anthropic提出的开放协议,采用客户端-服务器架构,让AI应用能像插USB一样统一接入数据库、API等外部能力,解决实时数据获取、工具调用和系统访问问题。它通过标准化连接机制,提高开发效率、扩展性和安全性,标志着AI从"会说话"向"会做事"的重要转变,有望成为AI与现实世界的"通用语言"。
2025-10-16 11:19:06
592
原创 【珍藏必读】DeepSeek-R1推理大模型:从思维链到实践应用的技术解析!看到就是赚到!!
文章详细介绍了推理大语言模型DeepSeek-R1的特点与训练方法。与常规LLM不同,推理LLM会在回答问题前进行思维链分解,通过推理步骤逐步解决问题。DeepSeek-R1通过强化学习和监督微调相结合的方式训练,实现了高质量的推理能力。文章还介绍了如何将DeepSeek-R1的推理能力提炼到较小模型中,以及一些技术尝试的失败经验,为理解推理大模型提供了全面视角。
2025-10-16 10:34:12
512
原创 大模型架构新突破:Meta FAIR详解Transformer与Mamba混合最佳实践(建议收藏)
Meta FAIR研究通过实验对比了Transformer与Mamba的两种混合架构(层间交替堆块和层内拆分注意力头并行)。研究发现,混合模型在质量和效率上均优于单一架构,1B参数模型下准确率提升2.9%,长上下文处理能力更强,计算效率提高18%。研究提供了具体设计建议:层间混合推荐1:5比例且Transformer置于中间层;层内混合按1:1分配隐藏维度。该研究为构建高效大模型提供了实用指南。
2025-10-15 11:54:20
799
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅