自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1258)
  • 收藏
  • 关注

原创 AI不会取代你,但会用AI的人会!解锁人类在AI时代的独特价值!

文章探讨了AI时代人类的价值定位,指出AI拥有海量知识和高效处理能力,但缺乏创造力、情感理解和模糊任务处理能力。人类应专注于培养问题解决能力、创造力和情商等AI难以替代的技能。成为优秀"AI协作者"的关键是学会精准提问和当好"总编辑",利用AI提升效率,同时注入人类独有的判断力和情感价值。未来核心竞争力不是是否会使用AI,而是如何与AI形成互补优势。

2025-09-18 16:51:09 323

原创 【AI大模型】Qwen和DeepSeek为什么都用Pre-Norm?看完这一篇你就知道了!!

本文详细解析了大模型中常用的Normalization技术,包括不同结构(Pre-Norm/Post-Norm)和不同类型(LayerNorm/RMSNorm/DeepNorm/BranchNorm)。文章解释了各类Normalization的原理、优缺点及适用场景,并提供了代码实现。Pre-Norm更易训练,Post-Norm最终性能更强;LayerNorm处理padding问题,RMSNorm简化计算保留性能;DeepNorm和BranchNorm则提升超深模型训练稳定性。这些技术对稳定训练过程、缓解梯

2025-09-18 16:24:32 433

原创 企业级RAG系统构建:避开这些坑,让你的RAG项目真正好用!看到就是赚到,建议收藏!!

本文分享了构建高质量企业级RAG系统的三大关键环节:文档预处理需根据业务场景选择技术并统一格式;文档召回需优化用户查询并利用标签提高效率;生成增强需处理上下文限制并优化文档格式。通过这些优化措施,可有效提升RAG系统的性能和用户体验,使RAG项目从能用升级到好用。

2025-09-18 15:31:29 576

原创 【收藏必备】零基础入门:使用Mem0为AI代理打造持久记忆层,Spring AI Alibaba实战教程

本文介绍了Mem0这一专为AI代理设计的内存层,详细讲解了如何使用Spring AI Alibaba接入Mem0,包括基础环境配置、Docker设置、代码实现等。Mem0可作为AI代理的持久内存层,用于回忆互动、存储用户偏好和从经验中学习,使AI代理能够记住、学习和进化。

2025-09-17 16:50:53 640

原创 收藏必备!4个AI写作提示词技巧,让你的AI创作告别机械感,更像人话!!

本文分享了4个实用AI写作提示词技巧,帮助解决AI生成内容机械、不成结构、AI味重等问题。通过结构化提示词(角色、任务、要求)、加入作者人设和目标受众、情绪化写作等方法,让AI创作更有人味。推荐使用Claude 4/Gemini或Kimi/Qwen3等优质大模型,强调详细指令能显著提高AI输出质量。适合程序员和小白学习,让AI辅助写作更加高效自然。

2025-09-17 16:28:19 357

原创 30倍加速!Meta新框架REFRAG大模型上下文智能压缩,零基础小白收藏这一篇就够了!!

文章介绍了Meta提出的REFRAG框架,通过智能压缩技术解决大模型长上下文导致的内存成本高和冗余计算问题。该框架采用上下文分块与压缩、选择性扩展与自回归保留等技术,实现30.85倍TTFT加速,将上下文处理长度扩展16倍。在RAG、多轮对话、智能体及Web级检索等场景中表现出色,为开发者提供了高效处理长上下文的解决方案。

2025-09-17 15:50:29 452

原创 【AI大模型】一文详解推理密集的复杂检索RAG,超越传统检索,零基础小白收藏这一篇就够了!!

在当前由大语言模型(LLM)驱动的技术范式中,检索增强生成(RAG)已成为提升模型知识能力与缓解「幻觉」的核心技术。现有的检索基准大多基于简单的信息检索查询,通常基于关键词或语义匹配就能找到相关信息。然而,许多复杂的现实世界查询需要深入推理才能识别相关文档,超出了表面形式匹配的范围。

2025-09-16 17:45:05 627

原创 【AI大模型】一图秒懂大模型,微调技术分类总结,零基础小白收藏这一篇就够了!!

随着大模型在自然语言处理和人工智能领域的广泛应用,如何高效地对其进行微调以适应特定任务成为研究热点。微调技术作为优化大模型性能的重要手段,根据调整的范围和方式,可以分为全参数微调和部分参数微调两大类别。以下将详细探讨这些技术的分类及其特点。

2025-09-16 17:11:33 558

原创 为什么AI产品总被开发怼?看完这张架构图让你少走弯路,产品经理必收藏!!

本文详细介绍了AI产品架构图的核心价值、绘制步骤和五个层次结构(数据层、数据处理层、模型层、工具层和应用层)。通过清晰的架构图,AI产品经理可以促进团队协作、向非技术人员展示产品价值,并提前发现潜在问题。文章提供了实战案例和绘制要点,帮助产品经理创建专业易懂的架构图,成为与开发团队沟通的有效工具。

2025-09-16 15:42:46 488

原创 【干货收藏】LangGraph核心技术:断点恢复与状态流实现AI Agent记忆与控制

本文介绍了LangGraph框架的两个核心能力:通过SqliteSaver实现对话状态持久化保存,让AI Agent具备记忆功能;使用graph.stream()实现状态流式展示和人工介入控制。文章详细讲解了如何配置SQLite数据库、使用thread_id管理不同会话上下文,以及如何在关键节点中断流程实现人工判断。这些功能使AI Agent能够记住过去对话内容,并在执行过程中实时受控,更好地应对复杂的多轮任务和长周期运行场景。

2025-09-15 16:45:48 669

原创 只会画大饼的AI产品经理已经OUT了,现在都在用AI做Demo!

本文详细介绍了如何通过原型设计→UI→快速搭Demo→用户验证的流程,快速验证产品想法的价值。文章提供了从画原型、利用AI工具(Motiff、Galileo AI等)到使用Gradio搭建可交互Demo的完整工具链与方法论,并给出了将想法转化为可测试假设的实操步骤、常见坑点及补救措施。通过这套流程,开发者能在最小成本下获取真实用户反馈,有效避免资源浪费,提高产品决策效率。

2025-09-15 16:07:27 998

原创 【AI大模型面试】面试官拷打:RLVR比SFT好在哪里?看完这一篇你就知道了!!

本文探讨了大模型强化学习训练中负样本的关键作用。通过RFT实验对比发现,虽然RFT训练reward高,但测试表现差,存在明显过拟合。研究表明,RL的泛化性和探索性源于负样本,当模型通过蒙对获得正确答案时,不稳固的推理链条在后续训练中会被负样本矫正。负样本促使模型不断探索,增强泛化能力,而RFT因处理负样本方式不同导致泛化性较差。

2025-09-15 15:42:49 787

原创 实话实说,RAG其实并没有你想的那么简单,Late Chunking vs Contextual Retrieval解决上下文难题

RAG是一种将外部知识库检索与生成模型相结合的技术,不过最近的Agent,MCP喧嚣至上,包括DS-R1模型的热度,让RAG的技术热度下降了很多。甚至我和一些AI的从业者讨论基本技术的时候,大家对RAG嗤之以鼻。其实RAG一点都不简单,我今天就总结了一下RAG的经常遇到的“左右手”怎么选的问题,算是给自己的学习做个总结。

2025-09-14 08:00:00 862

原创 【AI大模型】RAG应用评估全攻略:从检索质量到响应质量实战,看到就是赚到,建议收藏!!

本文详细介绍了RAG应用评估的必要性与方法,包括检索质量与响应质量的评估流程和代码实现。文章强调建立科学评估体系以应对大模型不确定性、知识库动态变化等挑战,提供多种评估指标和第三方工具,帮助开发者构建稳定、可控的RAG应用,确保其长期有效运行。

2025-09-13 16:34:58 583

原创 【AI大模型】RAG知识库三大检索方式全解析:从关键词到向量检索,小白也能掌握的大模型核心技术

本文详细介绍了RAG知识库中的三种检索方式:关键词检索、稀疏向量检索和密集向量检索。前两种基于TF-IDF和BM25算法,主要关注词语匹配;密集向量检索则通过计算余弦相似度实现语义理解。文章分析了各种方式的优缺点,并指出在实际应用中,混合检索策略结合了稀疏检索的快速稳定和密集检索的智能精准,能获得最佳效果,同时介绍了结果重排的重要性。

2025-09-13 16:09:54 952

原创 LangChain Open Deep Research深度研究代理,构建专业AI研究系统,报告生成质量提升300%!

本文深入介绍了LangChain Open Deep Research这一开源深度研究代理框架,详细解析其三阶段研究流程:范围界定(Scope)、深度研究(Research)和报告撰写(Write)。文章重点阐述了"主管-子代理"协同模型的设计原理,分享了多智能体架构的应用经验与教训,强调了上下文工程在缓解Token膨胀中的关键作用,并提供了完整的部署指南与实际案例演示,为开发者构建专业级AI研究代理提供了实用参考。

2025-09-13 15:25:57 893

原创 一文讲清!!智能体和工作流的本质区别到底是什么?全程干货,小白也能轻松看懂!!

本文详细解析了AI中工作流与智能体的本质区别。工作流如导航软件,依赖预设规则执行确定性任务;智能体如自动驾驶,基于目标动态决策并持续学习。前者适合规则明确、需稳定性的场景;后者适合复杂目标、多变环境和创造性工作。文章指出常见误区,强调没有"最佳"技术,只有"最合适"的解决方案,并建议采用混合架构实现最佳效果。理解这一区别对AI转型工具选择至关重要,能避免走弯路。

2025-09-12 17:21:45 530

原创 AI大模型推理显存消耗全解析:从Qwen3-32B看vLLM优化技术,助你高效开发大模型应用,建议收藏!!

文章详细分析了大模型推理过程中的显存消耗构成,以Qwen3-32B为例,解释了模型参数(64GB)、KV Cache(8K序列约1.25GB)和激活值的显占用。特别说明了vLLM如何通过前向后释放和分块/流式处理优化激活值内存,使实际显存远小于理论估值(8K序列仅1-3GB)。结论指出模型参数和KV Cache是主要显存瓶颈,激活值仅在Prefill阶段显著影响峰值。

2025-09-12 16:46:21 1038

原创 16K星Zep凭一张“动态记忆图”吊打一众GraphRAG?从静态文档到智能体记忆层,提升大模型应用性能

Zep是一种新型智能体记忆层服务,通过其核心组件Graphiti(时序感知的知识图谱引擎)动态整合非结构化对话数据和结构化业务数据。它构建三层知识图谱结构(片段子图、语义实体子图、社区子图),采用时序提取和边无效化机制管理动态信息更新,并通过搜索、重排序和构造三步实现记忆检索。在LongMemEval基准测试中,Zep显著提高了准确率并降低了延迟,为企业级大模型应用提供了更高效的动态知识整合解决方案。

2025-09-12 16:26:24 789

原创 程序员必学收藏:AI智能体架构设计12条核心原则,从入门到构建生产级系统

文章系统介绍了AI智能体架构设计的12条核心原则,涵盖自然语言转结构化工具调用、提示词即代码、上下文管理、工具设计等关键方面。强调AI Agent本质是"感知-决策-执行"的闭环,通过"有限状态机+大语言模型"组合实现通用智能。这些原则帮助开发者构建稳定、可扩展、具备容错能力的Agent系统,将AI从概念真正落地为企业生产力引擎。

2025-09-11 17:01:33 888

原创 【必藏】企业知识库系统+大模型集成,可接入Deepseek从零到一构建智能知识问答平台

本文介绍了一款开源企业知识库系统,提供在线笔记、文档管理、团队协作等功能,解决数据资产化、文件分散管理、知识流转效率低等问题。系统采用VUE+Spring Cloud技术栈,支持富文本编辑、思维导图、多人协同等特性,并可接入DeepSeek大模型实现智能问答。通过Coze平台构建智能体,将知识库向量化并开放API,便于二次开发集成,提供完整部署文档,适合企业团队私有化部署。

2025-09-11 16:37:45 694

原创 小白也能学会的Dify Agent开发:从多轮记忆到工具调用全栈指南,看到就是赚到,建议收藏!!

本文详细介绍了Dify Agent开发的核心技术,包括多轮记忆系统架构、动态输入注入与上下文管理、工具调用型Agent创建方法。文章提供了从记忆检索到工具调用的实战指南,并分享了上下文断裂排查、工具调用调试等最佳实践,最后探讨了多Agent协作、知识库增强等进阶方向,帮助开发者构建功能强大的智能Agent。

2025-09-11 15:57:05 633

原创 【保姆级教程】LangExtract大模型神器:精准提取文本信息,零代码实现结构化数据,小白必备收藏

LangExtract是谷歌开源的Python库,利用大语言模型从非结构化文本中精准提取结构化信息。它支持精确定位信息源头,结构稳定,能智能处理长文档。只需少量示例即可定制任务,无需微调,可快速适配医疗、法务、金融等多行业应用。通过可视化界面和交互式HTML,极大提升数据提取的准确性和可追溯性,有效降低RAG系统中的幻觉问题。

2025-09-10 11:56:09 964

原创 一文讲清从LangChain到LangGraph,AI智能体提示词工程的系统化学习,看到就是赚到,建议收藏!!

AI 的世界正在飞速演变,从简单的问答系统升级成了复杂、多步骤推理的智能代理。不管你是想打造客服机器人、数据分析工具,还是复杂的自动化工作流程,掌握 LangChain 和 LangGraph 的提示工程(Prompt Engineering)是你成功的关键!

2025-09-10 11:23:56 743

原创 阿里Qwen3-ASR-Flash深度解析:支持Prompt增强的语音识别大模型,性能超越GPT-4o

阿里发布语音识别大模型Qwen3-ASR-Flash,错误率低于GPT-4o和Gemini,支持11种语言及多种方言。最大特点是支持Prompt增强,通过文本输入提高专有名词识别准确率。模型仅通过API提供,按音频时长收费,基于未开源的Qwen3-Omni构建,展现了阿里在语音识别领域的技术实力。

2025-09-10 10:37:41 946

原创 LangGraph实战教程,手把手教你构建多智能体架构,全程干货,简单易懂,建议收藏!!

大模型多智能体系统(Large Model Multi-Agent System) 是由多个基于大语言模型(LLM)的智能体(Agent)组成的协作系统。每个智能体具备独立的任务处理能力,通过协同工作解决单一智能体难以完成的复杂问题。

2025-09-09 13:57:21 880

原创 【AI大模型】RAG技术详解,解决大模型“三大先天缺陷“的企业级AI基石,建议收藏!!

RAG技术通过外接动态知识库,解决大模型知识滞后、幻觉问题和行业知识缺乏三大缺陷。通过离线索引(文档分块、向量化)和在线检索(查询向量化、相似性搜索)两个阶段,用检索到的事实约束生成结果。高级RAG通过查询优化、检索优化和后处理进一步提升效果。RAG为企业提供合规、低成本、灵活的AI解决方案,已成为企业级AI的基石。

2025-09-09 11:33:34 928

原创 一文详解Graph RAG vs 传统RAG,构建更丰富上下文的智能检索革命,零基础小白收藏这一篇就够了!!

Graph RAG相比传统RAG具有明显优势。传统RAG的Top-K检索仅选择最相关片段,导致信息不完整,丢失上下文和联系。Graph RAG构建实体关联图,通过图遍历获取完整上下文,使LLM能更好理解结构化信息,生成更全面、更有意义的答案。这种结构化呈现方式降低漏掉关键细节的可能性,输出完整且有深度的响应。

2025-09-09 10:36:38 863

原创 大模型的“举一反三“术:深入浅出解析大模型泛化能力的底层逻辑,零基础小白收藏这一篇就够了!!

大模型的泛化能力使其从死记硬背进化到融会贯通,能处理新场景和新任务。这种能力源于统计学习、模式捕捉和表示学习等底层逻辑,通过高质量数据、Transformer架构和精巧训练方法实现。未来大模型将向更高效、可靠的方向发展,成为更值得信赖的智能助手。

2025-09-08 08:30:00 1606

原创 构建AI智能体——RAG技术详解:解决LLM幻觉问题的实战指南,零基础小白收藏这一篇就够了!!

本文详细介绍了RAG(检索增强生成)技术如何解决大语言模型的"幻觉"问题。RAG通过结合外部知识库与LLM,让模型先检索相关资料再生成答案,类似开卷考试。文章解释了RAG的工作原理、核心组件(检索器和生成器)、完整工作流程(离线处理和在线处理),并提供使用阿里千问模型和FAISS实现的代码示例。RAG在智能客服、企业知识库管理等领域有广泛应用,是提高AI回答准确性和可靠性的关键技术。

2025-09-08 08:00:00 601

原创 【AI大模型】Claude上下文管理太强了!三种交互模式高效利用长窗口,一文讲清,小白必看收藏!

在使用大语言模型(LLM)进行问答、推理或多轮对话任务时,我们常常遇到“上下文窗口”这个概念。它决定了模型一次性可以“处理”和“记住”的 token 总量,是理解模型能力边界和优化提示工程的基础。本文将通过三张图,分别剖析claude 三类典型上下文场景:标准对话模式、扩展思考模式、扩展思考 + 工具调用模式,帮助读者全面理解上下文窗口的结构、演变和使用策略。

2025-09-07 08:30:00 882

原创 2025年,如果你还在优化 prompt 工程,那你已经落后了!!

2025年,如果你还在优化 prompt 工程,那你已经落后了一大截。当一部分人还在做 prompt hacking,另一批阅观者已经用上 Agentic AI 应用框架,Agentic AI 已经切实到出产!Agent市场体重破 23 亿美金,预测到2028年达到280亿。这不是偏间技术,而是你职业生涯的切边大潮。

2025-09-07 08:00:00 964

原创 Karpathy重磅发声:告别「提示词工程」,拥抱「上下文工程」!大模型应用的系统性升级,AI开发者必看收藏

太少或格式不对,LLM 就缺乏必要的上下文,性能无法达到最优。太多或不相关,不仅成本上升,性能反而可能下降。说它是艺术,则是因为需要对 LLM 心理学有直觉般的理解——Karpathy 戏称为「人类精神」(people spirits)的引导直觉。

2025-09-06 08:30:00 1909

原创 大模型入门必看:生成式AI、推理模型、Agent与具身智能一文讲清,小白&程序员收藏!

当下,⼈⼯智能市场迎来了爆发期,并逐渐进⼊以⼈⼯通⽤智能(AGI)为主导的新时代。企业纷纷官宣“ AI+ ”战略,为新兴技术⼈才创造丰富的就业机会,⼈才缺⼝将达 400 万!DeepSeek问世以来,生成式AI和大模型技术爆发式增长,让很多岗位重新成了炙手可热的新星,岗位薪资远超很多后端岗位,在程序员中稳居前列。

2025-09-06 08:00:00 917

原创 【AI大模型】prompt-optimizer:小白也能玩转的提示词优化神器,一键提升大模型输出质量

prompt-optimizer是一款强大的AI提示词优化工具,支持Web、桌面、Chrome插件和Docker四种部署方式。它能一键优化提示词,支持多轮迭代改进,并实时对比优化前后效果。工具支持OpenAI、Gemini、DeepSeek等多种主流AI模型,可配置高级参数,采用纯客户端架构保障数据安全。通过功能提示词引导,帮助用户快速生成高质量提示词,提升AI输出质量与稳定性,适用于角色扮演、知识提取、创意写作等多种场景。

2025-09-05 11:52:17 736

原创 一文讲清知识图谱:突破传统RAG局限,打造智能体超强上下文,看到就是赚到!!

传统RAG方案在精准性、推理性和可解释性上存在不足。知识图谱通过建模实体及其关系,为智能体提供精准、可解释、覆盖全面的上下文。文章通过案例分析展示了知识图谱如何解决向量检索的局限,介绍"爆炸半径向量搜索"技术,以及知识图谱在上下文工程中的优势,包括明确作者与情境、提供可解释路径和动态结构更新等,使智能体处理更接近人类认知模式。

2025-09-05 10:48:52 635

原创 从零开始学RAG:手把手教你搭建专属知识库,解决大模型三大痛点!

文章介绍RAG技术如何解决大模型知识过时、幻觉和隐私问题,详解其原理、技术选型,并通过本地知识库和医疗辅助诊断系统两个实战案例展示搭建方法,最后提供优化技巧,强调RAG是赋能而非取代大模型,使其在专业场景中更实用。

2025-09-05 10:23:40 879

原创 一文彻底讲透大模型幻觉、从原理到实战解决方案,零基础小白收藏这一篇就够了!!

文章详细解析了大语言模型中的"幻觉"现象,包括前后矛盾、事实错误等四种类型。这些幻觉源于训练数据质量问题、AI生成机制缺陷和模糊的用户指令。为应对这一问题,文章提出了五项有效策略:使用精准提示词、采用示例学习、调整温度和TopK参数、引入RAG技术,以及设计幻觉检测方案。通过这些方法,用户可以在享受AI强大能力的同时,有效控制并减少幻觉的发生,确保输出内容的准确性和可靠性。

2025-09-04 18:41:06 586

原创 从 EchoLeak 到 AgentFlayer,RAG系统安全防护手册:从间接Prompt注入到数据外传通道详解

本文深入分析了RAG系统面临的安全威胁,特别是间接Prompt注入(IPI)攻击和数据外传通道。通过EchoLeak和AgentFlayer两个最新漏洞案例,揭示了攻击者如何通过隐藏指令和自动外传机制窃取企业敏感数据。文章强调传统安全假设的不足,并提出多层防御策略:输入净化、权限最小化、上下文隔离和输出拦截,为企业和开发者提供了一套完整的RAG安全防护框架。

2025-09-04 13:49:47 627

原创 【构建AI智能体】RAG切片策略完全指南:5种方法助你构建高效大模型知识库,建议收藏!

RAG切片是将长文档合理切割成小块的过程,是RAG系统的基石。文章详细介绍了五种切片策略:改进的固定长度切片、语义切片、LLM语义切片、层次切片和滑动窗口切片,分析了各自的优缺点和适用场景。选择合适的切片策略需考虑文档类型、精度需求和计算成本,通过实验评估效果最佳。切片质量直接影响AI检索和回答的准确性,是构建高效知识库的关键步骤。

2025-09-04 11:02:53 759

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除