自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1761)
  • 收藏
  • 关注

原创 AI时代就业变革:四大效应与五大新型职业,未来职业增长三大方向解析!

AI对就业影响呈现增强、替代、补充和创造四大效应,当前替代效应快于创造效应,但通过劳动力再培训可缓解失业风险。AI催生五类新职业:使能者(技术研发)、协作者(人机协作)、治理者(伦理安全)、推广者(市场应用)和支持者(运营保障)。这些职业呈现深度细分、跨界融合、人机协作和动态流变特征。未来职业增长将集中在AI原生、服务业和灵活就业领域,建议个人主动学习AI技能,企业以人为本转型,社会构建就业友好环境,共同应对AI带来的就业变革。

2026-02-19 12:39:43 402

原创 2026年35岁程序员的5条出路:AI赛道疯狂抢人,年薪百万不是梦

35岁程序员如何突破职业瓶颈?行业数据显示,掌握AI、云原生等核心技术的资深开发者正迎来黄金期,平均年薪达82万。本文揭示5大高价值出路:1)技术专家/架构师(工业软件/分布式系统);2)技术管理(总监年薪150万);3)AI工程师(模型优化岗年薪120万+);4)自由职业(跨境支付开发时薪180美元);5)技术教育(企业培训单场3-5万)。转型关键包括技术保鲜计划、人脉杠杆策略和第二曲线验证,同时需避免盲目追风口等三大陷阱。文末提供全套AI大模型学习资料包(含视频教程、面试真题等),助力开发者把握AI时代

2026-02-19 12:36:48 439

原创 一文总结!2026年大模型Agent RL训练多轮planning技术,收藏这篇就够了!

DeepSeek R1带火基于GRPO的强化学习技术后,agentic tool use learning也开始用上了GRPO,Reinforce++, PPO, policy gradient等各种算法了(以前是SFT+DPO,需要大量的标注数据来cover bad case,当时标注高质量数据都把我标哭了),想让大模型学会使用code interpreter, web search等工具来增强现有模型的数学和推理能力, 单轮就是调用一次tool,多轮就是调用多次tools, 多轮tool use更难一点

2026-02-19 12:34:31 477

原创 【AI大模型】带你解析9种提速又提效的Transformer优化方案!

Transformer目前已经成为人工智能领域的主流模型,应用非常广泛。然而Transformer中注意力机制计算代价较高,随着序列长度的增加,这个计算量还会持续上升。

2026-02-19 12:32:54 543

原创 AI应用推理架构关键问题解决方案:5大问题逐一击破!

落地一个企业级 AI 应用产品是一项复杂的任务,它涉及到多个层面的产品化挑战。为了确保产品的稳定性、效率和高质量的输出结果,必须在大模型推理引擎的外围进行大量的工程优化工作。以下是构建此类 AI 应用服务时可能遇到的一些关键问题:

2026-02-19 12:30:57 577

原创 15分钟后搞懂AI大模型:基本概念、Prompt、RAG、Agent及多模态

随着大模型的迅猛发展,LLM 作为人工智能的核心力量,正以前所未有的方式重塑着我们的生活、学习和工作。无论是智能语音助手、自动驾驶汽车,还是智能决策系统,大模型都是幕后英雄,让这些看似不可思议的事情变为可能。

2026-02-19 12:06:38 583

原创 大模型上下文工程深度解析:从提示工程到智能体构建

在应用AI领域,“提示工程”(Prompt Engineering)多年来一直是关注焦点,如今一个新术语逐渐凸显:上下文工程(Context Engineering)。基于语言模型进行开发,正从“为提示找到合适的词句”,转向更宏观的问题——“何种上下文配置最有可能让模型产生预期行为?”

2026-02-15 22:08:40 450

原创 AI Agent智能体解析-7种Agent框架对比!

代理(Agent)乃一种智能实体,具备自主环境感知与决策行动能力,旨在达成既定目标。作为个人或组织之数字化替身,AI代理执行特定任务与交易,其核心价值在于简化工作流程,削减繁复性,并有效降低人力投入与沟通障碍,促进效率与协作的双重提升。简而言之,代理技术让AI成为高效助手,助力个人与组织在复杂多变的环境中更加游刃有余。

2026-02-15 22:06:17 370

原创 大模型技术:深入理解预训练与微调,为什么需要预训练,什么是微调?

大模型需要先经过模型设计和实现,然后再进行预训练获得通用能力,最后通过微调强化能力

2026-02-15 22:04:39 343

原创 2026年普通人职业转型必备:一篇详细的实战指南,助你抓住新机遇!

AI大模型不再是技术圈的“小众游戏”,政策扶持、资本涌入与技术简化,正共同打造一个普通人可参与的职业新赛道。

2026-02-15 22:02:56 491

原创 AI Agent架构揭秘:大模型、提示词、工具与MCP的协同艺术

在当前的人工智能浪潮中,我们正经历一场从“语言模型”到“行动智能体”(AI Agent)的深刻范式迁移。大模型(LLM)的出现解决了机器的认知问题,但要让机器真正参与并主导现实世界的复杂任务,我们需要一个更完整、更具备自主性的系统框架。

2026-02-15 21:59:46 443

原创 【AI大模型技术】深度解析DPO和RLHF,你还分不清吗?

RLHF 存在模型训练占用资源多、训练不稳定、超参数敏感等问题。这也是 DPO 要解决的问题,资源占比相对低,训练稳定,但是 DPO 的缺点是没有 RLHF 对大模型提升的上限高。

2026-02-15 21:58:02 577

原创 为什么 RAG 一定需要 Rerank?看完你就懂了!!!

RAG 技术一直以来都备受关注,尤其是当它与大模型(LLM)结合后,人们都满怀期待地认为:这下终于可以轻松解决那些复杂的问答任务了!然而,现实往往并不如人意。很多开发者在完成一个 RAG 流程后,都会感到困惑:**为什么它的效果并没有达到预期呢?

2026-02-15 21:55:35 520

原创 大语言模型背后的Transformer,与CNN和RNN有何不同,一文搞懂!!

Transformer是一种基于注意力机制的序列模型,与传统的循环神经网络(RNN)和卷积神经网络(CNN)不同,Transformer仅使用自注意力机制(self-attention)来处理输入序列和输出序列,因此可以并行计算,极大地提高了计算效率。

2026-02-15 21:51:23 574

原创 99.97%成本降低!文档审核AI Agent技术详解,小白也能上手的实战教程!

文档合规审核是指根据法律法规、行业规范或企业内部规则,对各种专业文件进行内容和格式检查,发现潜在违规或缺陷。

2026-02-13 00:26:44 571

原创 国家战略AI赛道起航!掌握三大核心,这份AI大模型学习路线图助你抢占2026年新岗位!

更大的浪潮正在涌来。脉脉高聘报告揭示,2025年以来,AI新发岗位量呈现爆发式增长,**7月同比增长超过10倍**,简历投递量增长11倍。而综合多方信息预测,未来由AI大模型直接或间接创造的新增岗位,将以百万计。对于每一位程序员和希望入局的转型者而言,这不再只是一项新技术,而是开启未来职业空间的**战略级钥匙**。

2026-02-13 00:24:22 525

原创 AI时代就业变革:四大效应与五大新型职业,未来职业增长三大方向解析!

文章探讨AI对就业的四大效应(增强、替代、补充、创造)及五大新型职业类型(使能者、协作者、治理者、推广者、支持者)。AI新职业呈现深度细分、跨界融合、人机协作和动态流变特征。未来职业增长将集中在AI原生、服务业和灵活就业三大方向。建议个人主动学习AI技能,企业以人为本开展AI转型,社会构建就业友好型制度环境,共同应对AI带来的就业变革。

2026-02-13 00:22:29 610

原创 从零开始学RAG:大模型检索增强生成完全指南(程序员必看,建议收藏)

RAG(检索增强生成)是一种推理时上下文增强框架,通过检索器与生成器结合,解决大模型幻觉与知识过时问题。它采用双记忆系统(参数化+非参数化),无需重训即可更新知识。RAG在事实准确性、知识时效性和系统可解释性方面具有显著优势,已成为大模型应用的关键技术。未来发展方向包括多跳检索、多模态融合及隐私保护等。

2026-02-09 13:18:45 666

原创 RouteRAG:小模型的自规划检索强化学习方案,性能媲美GPT-4o

RouteRAG通过"统一策略+两阶段奖励"将文本/图谱检索转化为端到端强化学习问题,让小模型能自主规划"何时查、查什么"。其统一动作空间和三段式检索引擎使模型可选择最优检索策略,两阶段训练先保证正确性再优化效率。实验显示,仅用1万条数据训练的小模型在多跳问答中性能超越同尺寸模型,甚至媲美GPT-4o-mini,大幅提升检索效率和准确性。

2026-02-09 13:13:59 568

原创 Transformer自注意力机制核心原理解析:Q/K/V与token相似度的关系

文章深入解析了Transformer自注意力机制的核心原理,重点解答了两个问题:为何Q*K点积可计算token相似度,以及WQ、Wk、Wv权重矩阵的获取方式。语义相似的文本对应方向相似的向量,点积只是量化这种相似性;权重矩阵在训练时随机初始化并通过反向传播优化,推理时则使用训练好的固定值。理解这些原理有助于把握Transformer模型如何捕捉文本间的关联性。

2026-02-09 13:12:57 527

原创 MoE混合专家模型:如何用更少资源实现更大模型容量,程序员必看!

本文详细介绍了MoE混合专家模型的概念与优势。MoE模型由多个擅长不同任务的"专家"子模型组成,通过门控机制动态选择相关专家参与计算,实现激活参数的动态管理。这种设计使模型在保持大容量参数的同时,仅需激活部分参数即可完成任务,大幅降低计算成本。文章还探讨了激活参数的技术优势及开发者如何通过参数调整接口和部署工具有效利用MoE架构,为资源有限场景提供高效解决方案。

2026-02-05 14:59:00 312

原创 ReAct设计模式深度解析:LangGraph实现AI智能体的完整指南(含完整案例,值得收藏)

这篇文章详细介绍了ReAct设计模式及其在LangGraph中的实现。文章对比了传统实现与LangGraph的差异,展示了如何构建状态管理、推理节点、行动节点和条件决策等核心组件,并通过实际案例展示了ReAct模式在多步骤推理任务中的应用,提供了最佳实践和对比,帮助开发者构建生产就绪的AI智能体系统。

2026-02-05 14:56:26 549

原创 代码助手开发全攻略:让大模型真正理解你的代码库

文章详解构建专业代码助手的四大核心组件:代码解析(基于AST而非简单文本分割)、向量存储(按语义索引代码片段)、仓库地图(提供全局视角)和推理层。重点介绍了使用tree-sitter进行AST分块的方法,推荐向量数据库存储代码片段,以及如何构建系统提示让模型理解代码结构。对于大型项目,还介绍了Repo Map技术,将代码库压缩成树结构。目标是打造真正理解代码库的AI助手,而非简单代码补全工具。

2026-02-05 14:55:02 622

原创 AI代理记忆综述:从“短期失忆“到统一框架,一文读懂智能体记忆系统设计

AI代理记忆的"形式-功能-动态"统一框架,将记忆分为令牌级、参数级和潜在级三种形式,涵盖事实、经验和工作记忆三大功能,并详述形成、演化、检索和利用四阶段动态过程。研究表明混合内存系统性能提升20-30%,生成式检索优于传统检索。未来研究方向包括记忆自动化、多模态整合和多代理协作,推动AI代理从静态模型进化为具备持久认知的动态实体。

2026-02-04 18:39:24 583

原创 大模型学习宝典:发展历程、RAG技术与Agent架构详解,建议收藏

本文系统梳理了2017年以来大语言模型的发展历程,从Transformer架构到2025年的高性价比推理模型。详细介绍了RAG知识库应用的三阶段演进及Agent应用的设计模式(COT、TOT、ReAct等)、多智能体系统和通用Agent案例。文章还探讨了推理模型发展趋势,并提供了构建Agent的建议与框架选择指南,为开发者提供全面的大模型技术参考。

2026-02-02 20:24:07 546

原创 多智能体架构实战:LangChain构建高效AI系统的四种模式选择

文章探讨了多智能体架构的必要性及四种核心模式:子智能体(集中式编排)、技能(渐进式上下文加载)、移交(基于状态切换)和路由(并行分发)。分析了各模式的适用场景、性能特性和核心权衡,帮助开发者根据任务需求选择合适架构。研究表明,多智能体系统在处理复杂任务、管理海量知识时表现优于单体架构,LangChain可帮助开发者高效构建此类系统。

2026-02-02 20:22:27 607

原创 LLM多智能体系统通信选择指南:4大场景匹配方案,提升协作效率与可扩展性

本文针对大语言模型多智能体系统(LLM-MAS)的通信方式选择问题,提出"场景匹配"选择框架。围绕系统规模、任务特性、合规要求和跨平台需求四大维度,详细分析直接通信、共享状态通信、中间件中转通信和标准化协议四种方式的适用场景与优劣,并提供组合选择建议和决策原则,帮助开发者根据实际需求平衡效率、可控性与可扩展性,促进智能体高效协作与集体智能形成。

2026-02-02 20:20:42 528

原创 大厂都在用的20种Agent架构全解析:从单轮执行到多Agent协作,小白也能快速上手

文章详细解析了大厂实际落地的20种Agent架构,分为四类:单轮执行型、多轮规划型、多Agent协作型和垂直行业Agent。每种类型包含5种具体架构,从简单的工具调用型到复杂的多Agent协作系统。文章强调Agent的核心是任务执行而非对话,并提供了各架构的设计要点和落地场景,帮助开发者根据任务复杂度选择合适的Agent架构,避免过度复杂化。

2026-01-31 13:05:15 651

原创 AI智能体(AI Agents)全解析:大模型时代的智能系统设计与实战指南

本文全面综述了AI智能体的架构与应用,从审议与推理、规划与控制、工具调用与环境交互三个维度分析了智能体系统。文章探讨了智能体的组件、编排模式、部署场景及设计权衡,并讨论了评估挑战。AI智能体通过将基座模型与执行循环耦合,将自然语言转化为现实世界可执行的程序,但面临可靠性、安全性和可重复性等挑战。随着任务范畴扩展、部署模式演进和安全需求提高,实用智能体系统正成为可能,但仍需解决工具验证、记忆管理、决策可解释性等问题。

2026-01-31 10:14:35 607

原创 深度解析上下文工程:大模型架构师的核心技能(建议收藏)

上下文工程是在恰当时间、以恰当形式为LLM提供恰当信息的技术。智能体运作需六类上下文:指令、示例、知识、记忆、工具和护栏。上下文工程可分解为四阶段:编写(保存上下文)、读取(拉入上下文窗口)、压缩(保留必要token)和隔离(分割上下文)。通过工程化上下文管道,使大模型在正确时间看到正确信息,类似于特征工程优化机器学习模型,是提升大语言模型性能的关键技术。

2026-01-31 10:12:44 476

原创 让RAG更进一步的利器:教你使用两种出色的Rerank排序模型

摘要:本文探讨了高级RAG应用中检索后处理环节中的重排序(Rerank)技术。Rerank通过重新排序检索结果,提升与用户问题的相关性,从而提高LLM生成答案的质量。文章介绍了两种Rerank模型:商业闭源的Cohere Rerank模型和本地部署的开源bge-reranker-large模型。通过代码示例展示了Cohere Rerank在LlamaIndex框架中的应用效果,以及如何利用HuggingFace的TEI工具本地部署bge-reranker-large模型并实现自定义重排序功能。两种方法都能有

2026-01-30 10:38:14 571

原创 转型AI产品经理:非算法专业出身的成功之道,揭秘AI大模型时代的新机遇!

在从事AI产品相关工作三年后,我的结论是:**如今正值大模型加速落地的时期,行业内存在不少信息差,因此非常适合“跨界进入”。**

2026-01-30 10:35:00 592

原创 零基础也能年薪50万+?AI大模型转行全攻略:保姆级学习路线与避坑指南!

AI大模型技术发展催生新职业生态,相关岗位薪资涨幅显著但技术门槛较高。文章分析大模型行业四大核心岗位方向(数据、工程、算法、部署)的适配人群与转型建议,为零基础及传统IT从业者提供阶梯式学习路径:从Python编程与机器学习基础(2-3个月),到深度学习与大模型核心技术(3-4个月),最终通过实战项目积累企业级经验(4-6个月)。建议非技术背景者优先选择数据方向作为切入点,逐步向高阶领域拓展,实现低风险转型。

2026-01-30 10:32:29 642

原创 AI智能体框架选型指南:AutoGen、AgentScope、CAMEL和LangGraph深度解析

本文系统介绍四大AI智能体框架的设计理念与实战应用,探讨框架如何提升开发效率、实现组件解耦和状态管理。通过对比AutoGen的对话驱动、AgentScope的工程化架构、CAMEL的角色扮演范式和LangGraph的图结构工作流,分析各框架优势与局限。文章揭示了"涌现式协作"与"显式控制"的设计权衡,帮助开发者从脚本编写跃迁到规范化智能体应用开发。

2026-01-28 10:47:51 927

原创 建议收藏!大模型开发必知:10个核心概念详解,从RAG到推理加速,助你成为AI产品专家

本文详解大模型开发的10个核心概念,包括RAG、Agent、函数调用、思维链、向量数据库、量化、蒸馏、LoRA、剪枝和推理加速。每个概念从定义、实现方法和注意事项进行解析,帮助开发者理解AI应用落地的技术栈,做出正确的技术选择。

2026-01-28 10:38:49 755

原创 10 万文档 RAG 落地实战:从 Demo 到生产,我踩过的所有坑

在过去一年里,RAG(Retrieval-Augmented Generation)几乎成了企业落地大模型的标准配置。

2026-01-27 12:02:27 429

原创 2026年,不想被AI浪潮抛下?这可能是程序员保持竞争力的「唯一变量」(附学习地图)

AI智能体是将基座模型与推理、规划、记忆及工具调用能力结合的系统,作为自然语言与现实世界计算之间的接口。本文综述了智能体的三个核心维度:审议与推理、规划与控制、工具调用与环境交互,并分析了智能体组件、编排模式和部署场景。文章探讨了设计中的关键权衡(延迟与准确性、自主性与可控性等)和评估挑战,指出工具验证、记忆管理、决策可解释性等亟待解决的问题,为构建可靠、安全的智能体系统提供全面指导。

2026-01-26 09:15:00 633

原创 2026年!大模型应用开发避坑指南:保姆级教程+核心工具链,小白入门这一篇真的够了!

大模型作为新兴领域,不断地冒出来新的专有术语和新的概念,让大家觉得很神秘,捉摸不透。但是大部分复杂性的背后都会有一个极其简单便于理解的模型,本次分享最主要就是大模型的基本范式,通过范式将这些神秘感去除。

2026-01-26 09:15:00 715

原创 AI大模型核心概念全解析:从Transformer到前沿应用,构建全面技术认知框架!

本文系统梳理了AI大模型领域的14个核心概念,从Transformer架构、Token处理等基础组件,到预训练、微调等训练优化方法,再到RAG、AI Agent等前沿应用模式。文章深入浅出地解释了大模型智能涌现原理,并详细探讨了模型对齐、幻觉解决等关键挑战,为读者构建全面的大模型技术认知框架,是学习和应用大模型的重要参考资料。

2026-01-26 09:00:00 638

原创 AI工程师进阶路线图:从玩具级应用到生产级架构,系统架构师如何引领AI未来?

AI领域存在明显分化:多数开发者构建基于API的"玩具级"应用,而市场急需能处理生产级复杂性的系统架构师。文章介绍5个按复杂度递进的大模型项目(移动应用到自主工作流),涵盖编排、记忆系统和本地推理等核心技术。这些项目帮助开发者从API调用者转变为系统构建者,构建不可替代的核心竞争力。专业技能和生产系统是未来职业保障,收藏本文并付诸实践,才能避免被淘汰。

2026-01-26 08:45:00 1390

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除