概述
数据召回是RAG(检索增强生成)系统中的核心环节,负责从向量数据库中检索与用户查询最相关的知识片段。本流程通过多阶段处理确保召回结果的准确性、相关性和完整性,同时结合对话记忆管理来维持多轮对话的连贯性。

核心处理模块详解
查询优化模块
功能描述:对原始用户查询进行语义增强和扩展,提升检索覆盖率。
处理策略:
- 查询改写:生成多个语义相同但表述不同的查询变体
- 假设性回答:基于问题生成可能的回答,反向推导相关关键词
- 语义扩展:利用同义词、相关概念扩展查询语义空间
- 意图识别:识别用户真实意图,针对性优化查询表达
输入输出:
- 输入:原始用户查询
- 输出:3-5个优化后的查询变体
3.2 混合检索模块
功能描述:结合向量相似度检索和标量精确过滤,实现精准召回。需要先使用embedding嵌入模型把问题转成向量进行相似度计算。
配置参数:
- 向量相似度阈值:0.6-0.8(可调)
- 最大召回数量:50-100条(可调)
- 标量过滤条件:基于业务需求动态配置
结果后处理模块
功能描述:对初步召回结果进行质量优化。
处理流程:
-
合并去重
-
基于内容哈希值去除完全重复项
-
基于语义相似度合并高度相关内容(阈值:0.9)
-
重排序(Rerank)
-
使用专用重排序模型(如bge-reranker)进行精细排序
-
考虑因素:语义相关性、时效性、权威性、完整性
-
质量过滤
-
移除低质量片段(长度过短、格式混乱等)
-
确保最终结果多样性
对话记忆管理模块
功能描述:维护多轮对话的上下文连贯性。
记忆管理策略:
- 滑动窗口:保持最近N轮对话(默认N=10)
- 关键信息提取:从历史对话中提取实体、意图、决策等关键信息
- 记忆压缩:当记忆超长时,自动生成摘要替代原始内容
- 重要性衰减:基于时间衰减和重要性评分管理记忆保留
上下文管理模块
功能描述:优化提示词构建,防止上下文窗口溢出。
上下文组成:
[系统提示词]
[对话记忆摘要]
[当前用户问题]
[召回的相关文档]
[生成要求与约束]
优化策略:
- 动态裁剪:基于重要性评分保留最关键内容
- 分层压缩:对不同类型的上下文采用不同的压缩策略
- 令牌计数:实时监控令牌使用量,确保不超限
- 智能截断:优先截断冗余信息,保留核心语义
效果优化与参数调优
核心可调参数
| 参数类别 | 具体参数 | 建议范围 | 调优目标 |
| 检索参数 | 相似度阈值 | 0.6-0.8 | 平衡召回率与准确率 |
| 最大召回数量 | 50-100 | 控制计算开销 | |
| 重排序参数 | Rerank模型权重 | 0.3-0.7 | 优化排序质量 |
| 记忆参数 | 记忆窗口大小 | 5-15轮 | 平衡连贯性与噪音 |
| 记忆压缩阈值 | 0.8-0.95 | 控制信息保留度 | |
| 上下文参数 | 最大令牌数 | 根据模型调整 | 防止溢出 |

常见异常场景
- 低置信度召回:当所有召回结果相似度均低于阈值时,启用备用检索策略
- 记忆冲突:检测到新旧记忆矛盾时,启动记忆一致性校验
- 上下文超限:自动触发上下文压缩或请求用户简化问题
降级策略
- 检索降级:放宽过滤条件或使用关键词检索作为备选
- 记忆降级:临时禁用长期记忆,仅使用短期对话上下文
- 生成降级:切换至轻量级模型或提供标准回复模板
总结
数据召回系统通过多阶段的精细化处理,实现了从海量知识库中精准检索相关信息的能力。结合先进的对话记忆管理和上下文优化技术,确保了多轮对话的连贯性和生成质量。系统具备良好的可扩展性和可配置性,能够根据不同业务场景进行灵活调整和优化。
最后
为什么要学AI大模型
当下,⼈⼯智能市场迎来了爆发期,并逐渐进⼊以⼈⼯通⽤智能(AGI)为主导的新时代。企业纷纷官宣“ AI+ ”战略,为新兴技术⼈才创造丰富的就业机会,⼈才缺⼝将达 400 万!
DeepSeek问世以来,生成式AI和大模型技术爆发式增长,让很多岗位重新成了炙手可热的新星,岗位薪资远超很多后端岗位,在程序员中稳居前列。

与此同时AI与各行各业深度融合,飞速发展,成为炙手可热的新风口,企业非常需要了解AI、懂AI、会用AI的员工,纷纷开出高薪招聘AI大模型相关岗位。

最近很多程序员朋友都已经学习或者准备学习 AI 大模型,后台也经常会有小伙伴咨询学习路线和学习资料,我特别拜托北京清华大学学士和美国加州理工学院博士学位的鲁为民老师给大家这里给大家准备了一份涵盖了AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频 全系列的学习资料,这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
AI大模型系统学习路线
在面对AI大模型开发领域的复杂与深入,精准学习显得尤为重要。一份系统的技术路线图,不仅能够帮助开发者清晰地了解从入门到精通所需掌握的知识点,还能提供一条高效、有序的学习路径。

但知道是一回事,做又是另一回事,初学者最常遇到的问题主要是理论知识缺乏、资源和工具的限制、模型理解和调试的复杂性,在这基础上,找到高质量的学习资源,不浪费时间、不走弯路,又是重中之重。
AI大模型入门到实战的视频教程+项目包
看视频学习是一种高效、直观、灵活且富有吸引力的学习方式,可以更直观地展示过程,能有效提升学习兴趣和理解力,是现在获取知识的重要途径

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

海量AI大模型必读的经典书籍(PDF)
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

600+AI大模型报告(实时更新)
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

AI大模型面试真题+答案解析
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下


这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
1058

被折叠的 条评论
为什么被折叠?



