目录
39. 组合总和
给你一个 无重复元素 的整数数组 candidates
和一个目标整数 target
,找出 candidates
中可以使数字和为目标数 target
的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。
candidates
中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。
对于给定的输入,保证和为 target
的不同组合数少于 150
个。
示例 1:
输入:candidates =[2,3,6,7],
target =7
输出:[[2,2,3],[7]] 解释: 2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。 7 也是一个候选, 7 = 7 。 仅有这两种组合。
示例 2:
输入: candidates = [2,3,5],
target = 8
输出: [[2,2,2,2],[2,3,3],[3,5]]
示例 3:
输入: candidates = [2],
target = 1
输出: []
class Solution:
def __init__(self):
self.path=[]
self.result=[]
def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]:
self.backTracking(candidates,target,0)
return self.result
def backTracking(self, candidates: List[int], target: int, start:int):
if sum(self.path)>=target:
if sum(self.path)==target:
self.result.append(self.path[:])
return
for i in range(start,len(candidates)):
self.path.append(candidates[i])
self.backTracking(candidates,target,i) #就是本身也要递归
self.path.pop()
40. 组合总和 II
给定一个候选人编号的集合 candidates
和一个目标数 target
,找出 candidates
中所有可以使数字和为 target
的组合。
candidates
中的每个数字在每个组合中只能使用 一次 。
注意:解集不能包含重复的组合。
示例 1:
输入: candidates =[10,1,2,7,6,1,5]
, target =8
, 输出: [ [1,1,6], [1,2,5], [1,7], [2,6] ]
示例 2:
输入: candidates = [2,5,2,1,2], target = 5, 输出: [ [1,2,2], [5] ]
class Solution:
def __init__(self):
self.path=[]
self.result=[]
def combinationSum2(self, candidates: List[int], target: int) -> List[List[int]]:
candidates.sort()
self.backTracking(candidates,target,0)
return self.result
def backTracking(self, candidates: List[int], target: int, start:int):
if sum(self.path)>=target:
if sum(self.path)==target:
self.result.append(self.path[:])
return
for i in range(start,len(candidates)):
#正确剔除重复解的办法
#跳过同一树层使用过的元素(竖着可以重复用 横着重复用就会出现相同结果)
if i > start and candidates[i] == candidates[i - 1]:
continue
self.path.append(candidates[i])
self.backTracking(candidates,target,i+1)
self.path.pop()
131. 分割回文串
给你一个字符串 s
,请你将 s
分割成一些子串,使每个子串都是
回文串
。返回 s
所有可能的分割方案。
示例 1:
输入:s = "aab" 输出:[["a","a","b"],["aa","b"]]
示例 2:
输入:s = "a" 输出:[["a"]]
class Solution:
def partition(self, s: str) -> List[List[str]]:
result=[]
self.backTracking(s,[],result,0)
return result
def backTracking(self,s,path, result,start):
if start==len(s):
result.append(path[:])
return
for i in range(start,len(s)):
if self.isPalindrome(s[start:i+1]):
path.append(s[start:i+1])
self.backTracking(s,path,result,i+1)
path.pop()
else:
continue
def isPalindrome(self,s)->bool:
if s[:][::-1]==s:
return True
else:
return False