本文内容来自于学习麻省理工学院公开课:单变量微积分-部分分式-网易公开课
开发环境准备:CSDN
部分分式方法(Partial Fractions)
= 有理函数(rational function) =两个多项式的比( ratio of two polynormials)
部分分式方法就是把 拆分成一些可以积分的简单分式
目录
二、组合的方法1-分子中的分式变量的次数为1(掩盖法加代数方法)
一、掩盖法(Cover Up)
1、方法
当求解 时,显然要把式子拆分
(1) 首先拆分分母
为
, 考虑把分式变为
(2) 两边同时乘以(x-1)(x+2)
求A:
令x=1
可以直接看作是
相当于遮住了左侧等式中分母中的 (x-1) 和 右侧等式中的B部分,所以称为掩盖法
A = 1
求B:
令x=-2
可以直接看作是
B = 3
2、适用于下面的情况
Q(x)有不同的线性因子同时分子的次数比分母的次数低(degP<degQ)
3、例子
我计算不好,这边验算下
import numpy as np
from sympy import *
x= symbols('x')
expr1 = (x**2+3*x+8)/((x-1)*(x-2)*(x+5))
expr2 = (-2/(x-1)) + 18/(7*(x-2))+3/(7*(x+5))
print ('x=5')
print ('expr1=',expr1.subs(x,3))
print ('expr2=',expr2.subs(x,3))
x=5 expr1= 13/8 expr2= 13/8
二、组合的方法1-分子中的分式变量的次数为1(掩盖法加代数方法)
这个式子不适用于掩盖法,因为分子中有相同的分式(x-1)(x-1)
1、方法
(1 )拆分
这里为啥要拆分成这种形式?
老师的解释是类似 ,这个我不是很理解
这里B和C是可以使用掩盖法的,因为等式两边同时乘以
可以看到无论x=1或x=2, A都会被消掉,所以A只能使用代数的方法求解
当B和C都已经有值的情况下,随便设个x的值,A都可以求出,所以先计算B和C
(2) 求解 
令x=0(注意,这里的x不能使用掩盖法已经使用过的值)
三、组合的方法2-分子中的分式变量的次数不为1
1、方法
(1) 拆分
用掩盖法求解A
求解B和c无法用掩盖法,老师说除非使用复数计算这里才能使用掩盖法
(2)求解B,C
等式两边乘以分母
这里考虑x的齐次的系数在等式左右两侧要一致
所以首先考虑 的系数,按照原等式列新的等式
考虑常数,也就是 的系数
(3) 问题
这里提到如果在分母中有 这种怎么办,老师说这种情况是没有完全因式分解(fully factored)
sympy的函数factor可以做因式分解,但是这个情况并不完全
x= symbols('x')
expr1 =x**3+1
print ('expr1=', expr1.factor())
expr1= (x + 1)*(x**2 - x + 1)
这里( )依旧可以继续处理
多项式形式:
这里设 则有
(4)积分
四、当分式中分子的次数大于分母的次数(degP>degQ)
1、方法
(1) 分母合并因式
(2) 求商和余(按下图操作)
商+余/原分母
(3) 拆分
检查下:
x= symbols('x')
expr1 = x**3/((x-1)*(x+2))
expr2 = x-1+1/(3*(x-1))+8/(3*(x+2))
print ('expr1=', expr1.subs(x,5))
print ('expr2=', expr2.subs(x,5))
expr1= 125/28
expr2= 125/28