归并排序也是一种效率比较高的排序方法,主要思想是:将数组分为两个部分,如果两个部分都是有序的,那么将两个部分合并即可。如何使得两个部分都有序呢,那就是将每个部分再分成两个部分…直到每个部分只剩下一个元素或者只有该部分只有一个元素,然后再执行合并操作,上述分割操作明显是一个递归的过程。
合并操作代码如下:
//合并,数组的两边已排好序
public void merge(int[] a, int start, int mid, int end) {
int i = start,j = mid+1,k = 0;
int[] tmp = new int[end-start+1];
while(i <= mid && j <= end) {
if(a[i] <= a[j])
tmp[k++] = a[i++];
else
tmp[k++] = a[j++];
}
while(i <= mid)
tmp[k++] = a[i++];
while(j <= end)
tmp[k++] = a[j++];
for(int index = 0;index<k;index++)
a[start+index] = tmp[index];//注意这里a[]的下标
}
分割操作代码:
//拆分,左右两边只有一个元素,则认为有序
public void mergeSort(int[] a,int start, int end) {
if(start >= end)
return;
int mid = start + (end - start) / 2;
mergeSort(a, start, mid);//左边有序
mergeSort(a, mid+1, end);//右边有序
merge(a, start, mid, end);//合并左右两边
}
public static void main(String[] args) {
int[] a = {5,1,8,2,4,6,5,3};
new MergeSort().mergeSort(a, 0, a.length-1);
for(int i = 0;i<a.length;i++)
System.out.print(a[i]);
}
归并排序的时间复杂度为O(N*logN),由于合并的时候需要用到一个临时数组,故空间复杂度为O(N)。但上述代码的临时数组是在merge即合并操作中分配的,大量的new操作比较耗时,可以将临时数组作为参数传入,最后在main方法中分配数组,并在调用mergeSort时以参数传入,这样每次都使用同一个临时数组。