题目描述
小易有一个圆心在坐标原点的圆,小易知道圆的半径的平方。小易认为在圆上的点而且横纵坐标都是整数的点是优雅的,小易现在想寻找一个算法计算出优雅的点的个数,请你来帮帮他。
例如:半径的平方如果为25优雅的点就有:(+/-3, +/-4), (+/-4, +/-3), (0, +/-5) (+/-5, 0),一共12个点。
输入描述:
输入为一个整数,即为圆半径的平方,范围在32位int范围内。
输出描述:
输出为一个整数,即为优雅的点的个数
输入例子:
25
输出例子:
12
思路及Python实现
1.首先求出原的半径,再用int()处理为'int'类型
r = int(math.sqrt(n))
2.再判断r平方是否与输入的半径平方(n)相等,如相等我们知道在横轴及纵轴上共有4个优雅点存在
if r ** 2 == n:
total += 4
last = r
else:
last = r + 1
3.再遍历圆内各点,看是否满足条件;如满足,根据对称知识会有四个(如条件所示:如果'i'取3时成立,则会有四个点(3,4)、(3,-4)、(-3,4)、(-3,-4))
for i in range(1, last):
j = math.sqrt(n - i**2)
if int(j) >= j:
total += 4
OK,最后附上Python的实现
#encoding:utf-8
import math
def func(n):
total = 0
r = int(math.sqrt(n))
if r ** 2 == n:
total += 4
last = r
else:
last = r + 1
for i in range(1, last):
j = math.sqrt(n - i**2)
if int(j) >= j:
total += 4
return total
n = input()
print func(n)
更多样例