学习日记2019/2/23后续

				数据结构

我把陈越姥姥讲的最大子列和记录一下,留给以后的自己。

“最大子列和” 问题
给一个数组,让求出其中所有子列数据和的最大值.

1.暴力求解

遍历所有的子序列,找到其中最大值
//暴力求解
int MaxSubseqSum1(int A[], int n)
{
int ThisSum, MaxSum = 0;
int i,j,k;
//找出所有子列
for (i = 0; i < n; i++)
{
for (j = i; j < n; j++)
{
ThisSum = 0;
for(k = i; k <= j; k++)
{
ThisSum += a[k];
}// 求子列和
if(ThisSum > MaxSum)
{
int t = ThisSum;
ThisSum = MaxSum;
MaxSum = t;
}
}
}
return MaxSum;
}

时间复杂度N^3
2.1的改进版本
分析第一种方法,可以发现最内层 的 k 循环是可以省略的

int MaxSubseqSum1(int A[], int n)
{
int ThisSum, MaxSum = 0;
int i,j,k;
//找出所有子列
for (i = 0; i < n; i++)
{
ThisSum = 0;
for (j = i; j < n; j++)
{
ThisSum += a[j]; //直接在当前子列的基础上加上后面的值
if(ThisSum > MaxSum)
{
int t = ThisSum;
ThisSum = MaxSum;
MaxSum = t;
}
}
}
return MaxSum;
}

时间复杂度:N^2

  1. 二分法(分而治之)

分治法
分治法采用了递归的结构,将原问题分成几个规模较小但是类似于原问题的子问题, 通过递归的方式再来求解这些小问题,然后将子问题的解合并来建立原问题的解,分治法在每成递归时都有三个步骤:
分解: 将原问题分解成若干个小问题,这些子问题是原问题的规模较小的实例

解决: 解决这些子问题,通过递归的方式求解子问题,直到自问题的规模足够小,可以直接求解

合并: 将这些子问题的解合并成原问题的解

int Max3( int A, int B, int C )
{ /* 返回3个整数中的最大值 */
return A > B ? A > C ? A : C : B > C ? B : C;
}

int DivideAndConquer( int List[], int left, int right )
{ /* 分治法求List[left]到List[right]的最大子列和 /
int MaxLeftSum, MaxRightSum; /
存放左右子问题的解 */
int MaxLeftBorderSum, MaxRightBorderSum; /存放跨分界线的结果/

int LeftBorderSum, RightBorderSum;
int center, i;

if( left == right )  { /* 递归的终止条件,子列只有1个数字 */
    if( List[left] > 0 )  return List[left];
    else return 0;
}

/* 下面是"分"的过程 */
center = ( left + right ) / 2; /* 找到中分点 */
/* 递归求得两边子列的最大和 */
MaxLeftSum = DivideAndConquer( List, left, center );
MaxRightSum = DivideAndConquer( List, center+1, right );

/* 下面求跨分界线的最大子列和 */
MaxLeftBorderSum = 0; LeftBorderSum = 0;
for( i=center; i>=left; i-- ) { /* 从中线向左扫描 */
    LeftBorderSum += List[i];
    if( LeftBorderSum > MaxLeftBorderSum )
        MaxLeftBorderSum = LeftBorderSum;
} /* 左边扫描结束 */

MaxRightBorderSum = 0; RightBorderSum = 0;
for( i=center+1; i<=right; i++ ) { /* 从中线向右扫描 */
    RightBorderSum += List[i];
    if( RightBorderSum > MaxRightBorderSum )
        MaxRightBorderSum = RightBorderSum;
} /* 右边扫描结束 */

/* 下面返回"治"的结果 */
return Max3( MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum );

}

int MaxSubseqSum3( int List[], int N )
{ /* 保持与前2种算法相同的函数接口 */
return DivideAndConquer( List, 0, N-1 );
}

时间复杂度:N*log(N)

4.在线处理法

从前到后进行一次遍历,因此计算规模是n
在线处理的意思是指没输入一个数据就进行即时处理,在任何一个地方终止输入,算法都能正确给出当前的解。

int MaxSubseqSum4(int A[], int n)
{
int ThisSum = 0, MaxSum = 0;
int i;
for(i = 0; i<n; i++)
{
ThisSum += a[i];
if(ThisSum >MaxSum)
{
MaxSum= ThisSum;
}
else if(ThisSum <0){
ThisSum = 0;
}

}
return MaxSum;

}

时间复杂度:N

在线处理法的分析:该方法运用的数学逻辑我认为是这样的

第一条,假使有两个数,2和-3.显然2+(-3)=-1;若要在此数列上加上后面一个数,无论后面一个数的正负,这三个数组成的数列一定不是该三个数的最大子数列。
第二条,假使有三个数,4,6,-11;显然三个数相加等于负数,套用第一条,该数列再加上一个数形成的数列一定不是最大子数列。

接下来就到了一个我想了20多分钟想出来的问题。为什么这个算法要将几个数之和为负数的数列舍弃后直接从下一个数开始计算最大子数列呢?而不是从该数列中第二个正数再开始算呢?

我分析,从第一第二条的分析看,一旦新加入数列的那个数x使得到目前为止的数列A为负数,那么A中的任意连续部分的组合a(注意,该组合的最后一个数必须是x的前一个数)都必然小于x的绝对值,也就是说一旦a+x必定<0;
因为从一开始,留下的未舍弃的数列和必然是正数,而该数列的一部分连续数字的和必然小于等于已记录下来的最大子列和的值,而一旦x能使当前数列和为负数,那么x也必定能使当前数列的一部分连续数字的和(注意,该组合的最后一个数必须是x的前一个数)为负数。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值