机器学习测试与调试:从差异测试到生产部署
1. 测试驱动开发与差异测试
在测试驱动开发中,我们的目标是编写能够通过设计好的单元测试的生产就绪代码。设计良好的单元测试对代码中模块和组件的覆盖率越高,我们就越能放心地修改与机器学习生命周期中任何组件相关的代码。
除了单元测试,差异测试也是一种有助于可靠编程和机器学习模型开发的技术。差异测试会对软件的两个版本(基础版本和测试版本)使用相同的输入,然后比较输出结果。这个过程能帮助我们确定输出是否相同,并找出意外的差异。在差异测试中,基础版本是已经经过验证并被认可的版本,而测试版本需要与基础版本进行比较,以确保产生正确的输出。
在机器学习建模中,当我们在相同数据上比较同一算法的不同实现时,差异测试也非常有用。例如,我们可以使用它来比较使用 scikit-learn 和 Spark MLlib 这两个不同机器学习库构建的模型。以下是一些在 scikit-learn 和 Spark MLlib 中都存在的重叠算法及其类名:
| 方法 | scikit-learn | Spark MLlib |
| — | — | — |
| 逻辑回归 | LogisticRegression | LogisticRegression |
| 朴素贝叶斯 | GaussianNB, MultinomialNB | NaiveBayes |
| 决策树 | DecisionTree Classifier | DecisionTreeClassifier |
| 随机森林 | Random
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



