从文本中学习树语言:理论与算法
1. 基本概念
-
树自动机相关定义
- 初始设定 :设 $F = I+$,当 $u_1, \ldots, u_k \in Q \cup V_0$ 且 $f(u_1, \ldots, u_k) \in Q$ 时,$\delta_k(f, u_1, \ldots, u_k) = f(u_1, \ldots, u_k)$,显然 $T (Bs(I+)) = I+$。
- 规范树自动机 :对于正则树语言 $T$,规范树自动机 $C(T) = (Q, V, \delta, F)$ 定义如下:$Q = {U_T(s) | s \in ST(T)\setminus V_0}$,$F = {U_T(t) | t \in T}$,若 $f(s_1, \ldots, s_k)$ 在 $ST(T)$ 中,则 $\delta_k(f, U_T(s_1), \ldots, U_T(s_k)) = U_T(f(s_1, \ldots, s_k))$。$C(T)$ 是确定性精简自动机,与最小确定性字符串自动机的构造完全类似。
- 商自动机 :集合 $S$ 的划分 $\pi$ 是 $S$ 的两两不相交的非空子集的集合,其并集为 $S$。对于元素 $s \in S$,包含 $s$ 的 $\pi$ 的唯一元素记为 $B(s, \pi)$。若 $\pi$ 的每个块都是 $\pi’$ 的块的并集,则称 $\pi$ 细化 $\pi’$。对于自动机 $A = (Q, V, \de
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



