31、数字冰壶策略教学案例解析

数字冰壶策略教学案例解析

1. 强化学习与马尔可夫决策过程

强化学习问题可抽象为马尔可夫决策过程(MDP),这是强化学习中最基本的问题。简单的 MDP 通常包含四个基本元素 < A, S, R, P >:
- A:动作空间,即所有可采取的合法动作的集合。
- S:状态空间,所有状态的集合。
- R:奖励,可以是正奖励、负奖励或零。
- P:状态转移概率矩阵,执行动作 a 后状态从 s 转移到 s′ 的概率。

在强化学习中,智能体的交互过程如下:智能体根据当前状态 st 给出相应动作 at 并执行,之后环境状态从 st 转换为 st+1,并给出相应的 rt+1,智能体再根据新状态 st+1 和奖励 rt+1 给出新动作,如此循环,直到环境达到终止状态 sT,最终形成马尔可夫链,如公式所示:
[S_0 \xrightarrow{a_1, r_1} S_1 \xrightarrow{a_2, r_2} S_2 \cdots \xrightarrow{a_T, r_T} S_T]

以围棋为例,它是一个经典的强化学习问题。为了让计算机像人类一样下棋,科学家们想出了各种方法。直到 AlphaGo 出现,证明了计算机凭借强大的计算能力可以达到超越人类的智能水平。围棋可描述为如下马尔可夫决策过程:
- A:所有合法落子位置,随着游戏进行,可落子位置减少,动作空间相应减小。
- S:游戏所有可能状态的集合是无穷的。
- R:最终结果为输、赢或平局。
- P:在某位置落子会导致固定的状态转移,状态转移函数是确定的。

数字冰壶同样可抽象为马尔可夫决策过程,各元素体现如下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值