深度神经网络
人工智能的弱者
这个作者很懒,什么都没留下…
展开
-
SSD: Single Shot MultiBox Detector
https://github.com/edificewang/DeepLearningPaper/blob/master/SSD%20Single%20Shot%20MultiBox%20Detector.pdf我们提出一种使用单个深层神经网络检测图像中的对象的方法。我们的方法,称为SSD,将边界框的输出空间离散化为不同宽高比的一组默认框和每个特征图位置的缩放。在预测时间,网络为每个默认框中的每个对象类别的存在生成分数,并产生对框的调整以更好地匹配对象形状。此外,该网络将具有不同分辨率的多个特征图的预测结翻译 2017-09-22 17:43:57 · 3936 阅读 · 0 评论 -
Overfeat
原文路径:https://github.com/edificewang/DeepLearningPaper/blob/master/OverFeat.pdf我们提出了一个使用卷积网络进行分类,定位和检测的综合框架。我们展示了如何在ConvNet中有效地实现多尺度和滑动窗口方法。 我们还通过学习预测物体边界,介绍一种新颖的深入学习方法来进行本地化。然后累积而不是抑制边界框以增加检测置信度。我们显示使用单个共享网络可以同时学习不同的任务。 该集成框架是ImageNet大型视觉识别挑战2013(ILSVRC20翻译 2017-09-21 16:51:25 · 3608 阅读 · 1 评论 -
Fast R-CNN
https://github.com/edificewang/DeepLearningPaper/blob/master/Fast%20R-CNNObject%20detection%20with%20Caffe.pdf本文提出了一种用于目标检测的基于快速区域的卷积网络方法(Fast R-CNN)。快速R-CNN建立在以前的工作上,以使用深卷积网络有效地分类对象提案。 与以前的工作相比,Fast R-CNN采用多项创新技术来提高训练和测试速度,同时提高检测精度。快速R-CNN训练比R-CNN快9倍的V翻译 2017-09-29 17:40:53 · 516 阅读 · 0 评论 -
You only look once:YOLO
原文地址:https://github.com/edificewang/DeepLearningPaper/blob/master/You%20Only%20Look%20Once.pdf我们提出YOLO,一种新的目标检测方法。以前的目标检测工作使得分类器能够进行检测。相反,我们将目标检测看作成一个回归问题来实现空间的目标边界分离和类概率预测。单个神经网络在一次评估中直接从完整图像预测边界框和类概率。由于整个检测流水线是一个独立的网络,因此可以直接在端到端上进行检测优化。翻译 2017-09-29 08:34:34 · 1742 阅读 · 0 评论 -
YOLO9000
原文地址:https://github.com/edificewang/DeepLearningPaper/blob/master/YOLO9000.pdf翻译 2017-09-22 10:24:09 · 2823 阅读 · 0 评论