论文笔记
文章平均质量分 67
BVL10101111
THU master, interested in ML,DL,DM
github:https://github.com/BenchengY
展开
-
论文笔记之Smart Reply: Automated Response Suggestion for Email
本文是google团队在2016年kdd上发表的一篇论文, 是对gmail中应用的自动回复功能框架进行了介绍,应用的环境就是在gmail中来了一封邮件,系统会自动推荐3个回复语句供用户选择,来方便回复。下面是整个框架的流程图: 面临的挑战:1,个性化推荐2,多样化推荐3,处理能力强4,保护用户隐私对于挑战1, 2 1)加了一项惩罚项使得一些过于简单的,回答的开头类似的response被剔除掉原创 2016-12-11 11:13:25 · 2394 阅读 · 4 评论 -
论文笔记之Dynamic Routing Between Capsules
相信大家最近被hinton的这篇capsule的论文刷屏了,这篇论文是发表在nips2017上的。其实capsule这个概念最早是hinton的一篇发表在ICANN 2011上的论文中提出的,不过当初没有引起太大的关注。今年的早些时候,hinton也在多个公开场合表达capsule这样一种想法。在此,笔者在这里记录下自己对这篇论文的理解。首先在这里推荐几篇与这篇论文相关的,笔者认为比较有用的资源,可原创 2017-11-26 16:58:20 · 7205 阅读 · 1 评论 -
论文笔记之Label-Free Supervision of Neural Networks with Physics and Domain Knowledge
这一篇是AAAI 2017的best paper。出自Stanford ,随手查了一下,二作Stefano Ermon指导的AAAI 2017的另一篇paper,拿了Best Student Paper Award (CompSust Track)。在此膜拜一发。一.题目理解不得不说,一篇好的paper,题目很重要,是否吸引人。比如这一篇,猛地一看感觉很有内容,想法很新颖。 label-free原创 2017-09-15 22:02:26 · 3728 阅读 · 0 评论 -
论文笔记之Synthetic Data for Text Localisation in Natural Images(人工合成带有文本的图片)
Synthetic Data for Text Localisation in Natural Images是VGG实验室2016年CVPR的一篇论文。这篇论文所做的主要贡献有两点: 1.将word人工的嵌入到自然图片中,人工生成带有文本的图片(synthText)。 2.提出一种FRCN的网络来检测文本。本文主要针对第一点贡献进行详细讲解,是如何人工生成数据。 源代码:here一原创 2017-08-07 16:51:59 · 5831 阅读 · 1 评论 -
论文笔记之Fully Convolutional Networks for Semantic Segmentation
最近了解到了Image Semantic Segmentation方面的知识,在此做一个记录。 这篇论文是2015cvpr的best paper,可以说是在cnn上做图像语义分割的开山之作。**1.语义分割定义:** 语义就是指物体的类别,即属于同一类别的物体都算作一类比如图像中的3个人算作一类,5辆汽车算作一类等,它们都属于同一类别,即“人类”、“汽车”一般规定要进行分割的n个类别的物体(即我原创 2016-12-27 17:16:37 · 3298 阅读 · 5 评论 -
论文笔记之Structural Deep Network Embedding
本论文是kdd2016的一篇论文主要的目的也是做node embedding。主要的想法就是通过deep autoencode对node进行embedding,不过在在embedding的时候不仅考虑了1-hop的信息而且考虑了n-hop的信息。使其变成半监督学习的模式(其实就是对loss function改了改)输入是一个graph的n*n的邻接矩阵S,其实可以看成有n个数据的训练集,每个数据的f原创 2017-01-09 20:09:43 · 6484 阅读 · 3 评论 -
论文笔记之Diffusion-Convolutional Neural Networks
本文是2016年NIPS上的论文也是在graph上采用cnn进行了探讨。思路看似十分简单: 对于一张graph而言,有N个node,每个node有F个feature,每个节点关注H hop以内的信息 架构: 对于 node classification 输入:H*N*N*F 第一层:(其实对于每个node而言,通过这一层的映射,会得到一个H*F的map。对于map上的每个元素,是这么得来的原创 2017-01-11 14:41:05 · 6284 阅读 · 0 评论 -
论文笔记之Learning Deep Representations for Graph Clustering
本篇论文是2014年AAAI的一篇论文。思想也比较简单,主要是采用SAE(栈式自编码),在graph上进行node embedding,将embedding得到的每个node的vector做为输入,进行graph cluster。论文中采用的是最常用的k-means方法来cluster。算法如下: step1 得到graph的n*n的邻接矩阵S和度矩阵Dstep2 将D’S作为SAE的输入原创 2017-01-09 19:32:56 · 4015 阅读 · 1 评论 -
论文笔记之Learning Convolutional Neural Networks for Graphs
本篇论文是2016ICML上的一篇论文,对于如何将cnn应用在graph上提供了一种新的思路。架构: 总体上讲,就是用w个固定size=(k+1)的子图来表示输入的graph,再将这w个子图正则化后,生成一个w(k+1)维的向量,作为传统的cnn的输入,进行学习。其实就是做了一个从graph到向量的映射的一个预处理过程。算法流程 输入:任意一张图 输出:每个channel输出w个recep原创 2016-12-06 11:07:32 · 10270 阅读 · 5 评论 -
论文笔记之Spectral Networks and Deep Locally Connected Networks on Graphs
这是2014 nips上的一篇论文。 主要的贡献就是设计了在irregular grid上的cnn的应用。**文中有两个并列的模型:第一个模型deep locally connect network(spatial construction从空间角度去建立)locally 体现在 只取每个节点前k个neighborhoods。 connect 体现在,每层与每层之间的神经元数目是通原创 2016-12-01 20:17:29 · 15145 阅读 · 4 评论 -
论文笔记之Deep Convolutional Networks on Graph-Structured Data
本篇论文是2015年nips上的一篇论文, 是对于其本人在2014年nips发表的论文:Deep Convolutional Networks on Graph-StructuredData 对于graph上的cnn进一步探讨。相比于之前的工作,此篇论文主要贡献有两点: 1.将之前的construction应用于大数据集的分类问题——Imagenet 2.对于输入的graph是否有标签,分别原创 2016-12-02 19:12:38 · 8334 阅读 · 1 评论 -
论文笔记之 Collaborative Deep Learning for Recommender Systems
这篇论文是KDD2015的一篇用DL去做RS的论文。想法挺有意思的。看过论文的同学都知道整体的模型可以用下图表示:这里只讲讲整体的思路与理解:1)这是一个CF和CBF结合用bayes去做2)CBF主要是体现在整个用SDAE提取item特征。3)bayes体现在,网络中的各种参数是加了一个beyas先验生成的。4)CF体现在,对于u和i这两个向量的生成,用两个不同的高斯先验,来生成,lambda_v...原创 2018-04-13 11:09:02 · 3244 阅读 · 0 评论