本论文是kdd2016的一篇论文
主要的目的也是做node embedding。
主要的想法就是通过deep autoencode对node进行embedding,不过在在embedding的时候不仅考虑了1-hop的信息而且考虑了n-hop的信息。使其变成半监督学习的模式(其实就是对loss function改了改)
输入是一个graph的n*n的邻接矩阵S,其实可以看成有n个数据的训练集,每个数据的feature个数是n,即与图上各点的连接情况
框架如下:
垂直看是正常的deep autoencode(没有稀疏项),水平看,在每个smaple(node)的最后一个encoding层,还加上了和其他smaple(node)的约束关系,其实就是邻接关系的约束。
具体看Loss function: