论文笔记之Structural Deep Network Embedding

这篇kdd2016的论文介绍了如何使用深度自编码器进行节点嵌入,不仅考虑1-hop信息,还考虑了n-hop信息,将问题转化为半监督学习。通过邻接矩阵S作为输入,构建的框架在最后一层编码中加入邻接关系约束,损失函数结合无监督和监督学习,优化邻接节点间的相似性,同时采用L2正则化。训练过程逐个节点进行,更新权重。
摘要由CSDN通过智能技术生成

本论文是kdd2016的一篇论文

主要的目的也是做node embedding。

主要的想法就是通过deep autoencode对node进行embedding,不过在在embedding的时候不仅考虑了1-hop的信息而且考虑了n-hop的信息。使其变成半监督学习的模式(其实就是对loss function改了改)

输入是一个graph的n*n的邻接矩阵S,其实可以看成有n个数据的训练集,每个数据的feature个数是n,即与图上各点的连接情况

框架如下:

这里写图片描述

垂直看是正常的deep autoencode(没有稀疏项),水平看,在每个smaple(node)的最后一个encoding层,还加上了和其他smaple(node)的约束关系,其实就是邻接关系的约束。


具体看Loss function:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值