LeetCode 三角形最小路径和(C++, 动态规划)

这篇博客介绍了如何解决LeetCode上的三角形最小路径和问题,采用动态规划策略。通过定义f[i][j]表示到达三角形位置(i, j)的最小路径和,利用状态转移方程f[i][j]=min(f[i−1][j−1], f[i−1][j])+c[i][j]来求解,同时考虑边界条件。博主给出了两种代码实现,并附有运行截图。" 78299035,7329810,XTU图形与数字塔编程挑战,"['C语言', '算法', '编程', '嵌套循环', '图形输出']
摘要由CSDN通过智能技术生成

问题描述

给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。

相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1的两个结点。

例如,给定三角形:

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。

解题思路

  • f [ i ] [ j ] f[i][j] f[i][j]表示从三角形顶部走到位置 ( i , j ) (i, j) (i,j)的最小路径和。则由题意得,动态规划状态转移方程为: f [ i ] [ j ] = min ⁡ ( f [ i − 1 ] [ j − 1 ] , f [ i − 1 ] [ j ] ) + c [ i ] [ j ] f[i][j]=\min(f[i−1][j−1],f[i−1][j])+c[i][j] f[i][j]=min(f[i1][j1],f[i1][j])+c[i][j]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值