算法课第12周第2题——63. Unique Paths II

题目描述:

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.


程序代码:

class Solution {
public:
	int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
		if (obstacleGrid.empty() || obstacleGrid[0].empty())
			return 0;

		// 得到高度、宽度m, n的值
		int m = obstacleGrid.size();
		int n = obstacleGrid[0].size();

		// 建立一个二维数组
		vector<int> temp(n, 0);
		vector<vector<int> > f(m, temp);

		// (0,0)处若无障碍,则此处路径数为1;若有障碍,则直接返回0
		if (obstacleGrid[0][0] == 0) {
			f[0][0] = 1;
		}
		else {
			return 0;
		}

		// (i, j)处可到达路径数为其上或左处之和
		// 注意处理边界处
		for (int i = 0; i < m; i++) {
			for (int j = 0; j < n; j++) {
				if (i == 0 && j == 0) {
					continue;
				}
				if (obstacleGrid[i][j] == 0) {
					if (i == 0) {
						f[i][j] = f[i][j - 1];
					}
					else if (j == 0) {
						f[i][j] = f[i - 1][j];
					}
					else {
						f[i][j] = f[i - 1][j] + f[i][j - 1];
					}
				}
				// 若该点处为障碍,则到达此点处路径数为0
				else if (obstacleGrid[i][j] == 1) {
					f[i][j] = 0;
				}
			}
		}

		return f[m - 1][n - 1];


	}
};


简要题解:

本题运用了动态规划的算法。

先理清题意。本题是上周所做的前一题的延伸。需要从左上角的起点到右下角的终点,但中间可能遇到障碍物(障碍物表示为1,无障碍物则表示为0),求出总共可能的路径数量。

要解出本题,需要在本周所做的之前那题的基础上再考虑解决障碍物的问题。根据之前那题,我们已经可以列出无障碍物(即 obstacleGrid[i][j] == 0)时候该点处的转移方程:

if (i == 0)    f[i][j] = f[i][j - 1]

else if ( j == 0)    f[i][j] = f[i - 1][j] 

else    f[i][j] = f[i - 1][j] + f[i][j - 1]

接着要解决有障碍物时的问题。实际上解决方法很简单,当遇到障碍物时,即表示该点处不通(即 obstacleGrid[i][j] == 1),则走到此点处的可能路径数为0,所以对应转移方程:

f[i]j] = 0

这样就解决了这个延伸的问题。此外注意一下,起点处若 obstacleGrid值为1, 可直接输出结果为0.   最终的输出依然是f[m-1][n-1].


本题是本周所做上一题的延伸练习,增加了一个条件,让题目难度稍微增加。我感到,做这种相互关联的练习,有助于我更好地理解问题。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值