1.生成整个查询数据集统计
Book.object.all().aggregate(Avg('price'))
aggregate()是一个查询集的末端字句。调用后会返回一个由名称和值组成的字典
如果需要手动指定统计名称,则
Book.object.all().aggergate(average_price=Avg('price'))
生成查询集中每一个项目的统计:
Booki.object.all().aggergate(Avg('price'),Max('price'))
2.为查询集中每个独立的对象生成统计
这个其实就是先做一个group 在做sum
计算每本书的作者人数,则:
Book.object.annotate(Count('authors')) (如何指定book来作为统计字段)
统计的名称和和函数名组成
Book.objects.annotate(num_author=Count('authors'))
3.统计被查询模块的相关联的模块字段
统计每个书店中的价格范围:
Store.objects.annotate(min_price=Min('books_price'),max_price=Max('books_price'))
先根据name做了一个group by,再根据book来计算min,max
查询所有书店中的书的最高价和最低价
Store.objects.aggergate(min_price=Min('book_price'),max_price('book_price'))
总结:
annotate不是末端字句,而aggregate是一个末端字句,annotate()子句的输出是一个查询集,这个查询集可以和其他查询集一样操作。
4.在过滤器中使用统计:
filter()和exclude()
统计书名以Django开头的书:
Book.objects.filter(name_startwith=‘Django’).annotate(num_authors=count('authors'))
以django开头的书有很多个,先分组,在根据每组计算
当与aggregate()字句连用:
Book.objects.filter(name_startwith='Django').aggregate(Avg('price'))
统计所有以Django开头的书的平均价格。
产生一个由两个以上作者的书单:
Book.objects.annote(num_book=Count('book')).filter(num_book_gt=1)
annotate 和 filter字句顺序:
annotate()子句只作用于查询时,该统计只对字句之前的查询起作用。
举例子:
Publisher.object.annotate(num_books=Count('book')).filter(book_rating_gt=3.0)
先做一个group by ,然后sum。不同的是book其实是一个model类型,所以后面可以根据类型book的属性进行过滤。
Publisher.objects.filter(book_rating_gt=3.0).annotate(num_books=Count('book'))
先过滤 在分组 在count
order by
统计可以作为排序的基础
values()
统计每个作者各自所写的书的平均评分:
Book.objects.annotate(Avg(rating))
使用values()字句,返回的结果会有所不同:
Author.objects.values('name').annotate()
values具体解释:
返回一个QuerySet的子类ValueQuerySet。这是一个字典类型,并且每一項代表一个object.
返回值讨论:
1.filter的返回值,返回的是一个object,具体的数据是需求在去取值。
Bolg.objects.filter(name_startwith='Beatles')
[<Blog:Beatles Bolg>]
2.values()返回的是object:with the keys corresponding to the attribute names of model objects.
Bolg.obejcts.filter(name_startwith='Beatles').values()
[{'id':1,'name':'Beatles'}]
对小计进行统计:
假设你要统计每本书的作者人数的平均值:
Book.objects.annotate(num_authors=Count('authors')).aggregate(Avg('num_authors'))
Book.objects.annotate(num_authors=Count('authors')).aggregate(Avg('num_authors'))
Book.object.all().aggregate(Avg('price'))
aggregate()是一个查询集的末端字句。调用后会返回一个由名称和值组成的字典
如果需要手动指定统计名称,则
Book.object.all().aggergate(average_price=Avg('price'))
生成查询集中每一个项目的统计:
Booki.object.all().aggergate(Avg('price'),Max('price'))
2.为查询集中每个独立的对象生成统计
这个其实就是先做一个group 在做sum
计算每本书的作者人数,则:
Book.object.annotate(Count('authors')) (如何指定book来作为统计字段)
统计的名称和和函数名组成
Book.objects.annotate(num_author=Count('authors'))
3.统计被查询模块的相关联的模块字段
统计每个书店中的价格范围:
Store.objects.annotate(min_price=Min('books_price'),max_price=Max('books_price'))
先根据name做了一个group by,再根据book来计算min,max
查询所有书店中的书的最高价和最低价
Store.objects.aggergate(min_price=Min('book_price'),max_price('book_price'))
总结:
annotate不是末端字句,而aggregate是一个末端字句,annotate()子句的输出是一个查询集,这个查询集可以和其他查询集一样操作。
4.在过滤器中使用统计:
filter()和exclude()
统计书名以Django开头的书:
Book.objects.filter(name_startwith=‘Django’).annotate(num_authors=count('authors'))
以django开头的书有很多个,先分组,在根据每组计算
当与aggregate()字句连用:
Book.objects.filter(name_startwith='Django').aggregate(Avg('price'))
统计所有以Django开头的书的平均价格。
产生一个由两个以上作者的书单:
Book.objects.annote(num_book=Count('book')).filter(num_book_gt=1)
annotate 和 filter字句顺序:
annotate()子句只作用于查询时,该统计只对字句之前的查询起作用。
举例子:
Publisher.object.annotate(num_books=Count('book')).filter(book_rating_gt=3.0)
先做一个group by ,然后sum。不同的是book其实是一个model类型,所以后面可以根据类型book的属性进行过滤。
Publisher.objects.filter(book_rating_gt=3.0).annotate(num_books=Count('book'))
先过滤 在分组 在count
order by
统计可以作为排序的基础
values()
统计每个作者各自所写的书的平均评分:
Book.objects.annotate(Avg(rating))
使用values()字句,返回的结果会有所不同:
Author.objects.values('name').annotate()
values具体解释:
返回一个QuerySet的子类ValueQuerySet。这是一个字典类型,并且每一項代表一个object.
返回值讨论:
1.filter的返回值,返回的是一个object,具体的数据是需求在去取值。
Bolg.objects.filter(name_startwith='Beatles')
[<Blog:Beatles Bolg>]
2.values()返回的是object:with the keys corresponding to the attribute names of model objects.
Bolg.obejcts.filter(name_startwith='Beatles').values()
[{'id':1,'name':'Beatles'}]
对小计进行统计:
假设你要统计每本书的作者人数的平均值:
Book.objects.annotate(num_authors=Count('authors')).aggregate(Avg('num_authors'))
Book.objects.annotate(num_authors=Count('authors')).aggregate(Avg('num_authors'))