时间序列分析的matlab自相关函数autocorr

本文介绍时间序列分析中的autocorr和crosscorr函数用法。autocorr用于计算并描绘单变量随机时间序列的自相关函数及其置信区间,crosscorr则用于计算并描绘两时间序列的互相关函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

autocorr

功能:计算并描绘时间序列的自相关函数

格式:

autocorr(Series,nLags,M,nSTDs) % 计算并绘制单变量随机时间序列的样本ACF及置信区间,如果不想绘制置信区间,则设置nSTDs=0
[ACF,lags,bounds] = autocorr(Series,nLags,M,nSTDs) % 计算并返回ACF

说明:

Series--时间序列

nLags--延迟,当nLags=[]或缺省时,计算ACF时在延迟点0、1、2、。。。、T处,T=min([20 length(Series-1)])

M--非负整数,表示在多大延迟时理论ACF为0.autocorr假设序列为MA(M),并且使用Bartlett估计方法来计算大于M的延迟的标准误差。如果M=[]或缺省,则为0,函数假设序列为高斯白噪声。

nSTDs--样本ACF估计误差的标准差。

ACF--样本自相关函数

Lags--与ACF(0,1,2,。。。,nLags)相对应的延迟

Bounds--置信区间的近似上下限,假设序列为MA(M)过程。

rng('default')                % make output reproducible使结果可复现
x = randn(1000, 1);           % 1000 Gaussian deviates ~ N(0, 1).
y = filter([1 -1 1], 1, x);   % Create an MA(2) process.创建MA(2)过程

[ACF, lags, bounds] = autocorr(y, [], 2)  % Compute the ACF with 95 percent confidence.就算95%置信度下的相关系数

autocorr(y, [], 2)            % 绘制结果


可以看到在延迟在2以后不再显著,说面这可能是一个MA(2)过程。

Note:此函数在判断MA过程时常用。



crosscorr

功能:计算并描绘两时间序列的互相关函数

格式:

crosscorr(Series1,Series2,nLags,nSTDs)

[ACF,lags,bounds] = crosscorr(Series1,Series2,nLags,nSTDs)

说明:

参数具体说明同autocorr函数

% 创建100个高斯分布的元素的时间序列

rng('default')                % make output reproducible
x = randn(100, 1);       % 100 Gaussian deviates, N(0, 1)

% 创建上面序列的延迟副本

y = lagmatrix(x, 4);    % Delay it by 4 samples

y(isnan(y)) = 0;

% 计算XCF互相关函数

[XCF, Lags, Bounds] = crosscorr(x, y);

crosscorr(x, y)

image

可以看到延迟在4处很显著。

Note:在信号处理中经常要研究两个信号的相似性,或研究一个信号经过一段延迟后与自身的相似性,以实现信号的检测、识别与提取等。相关函数是描述随机信号的重要统计量,有着广泛的用途,例如噪声中信号的检测、信号中隐含周期性的检测、信号相关性的检测、信号时延长度的测量等。


### MATLAB `autocorr` 函数详解 #### 使用方法 在MATLAB中,`autocorr`函数用于计算给定数据序列的自相关系数。该函数能够帮助识别时间序列中的周期性和其他特性[^2]。 对于输入的数据向量或矩阵,调用方式如下: ```matlab % 计算默认的最大滞后阶数下的自相关函数 figure; autocorr(data); ``` 如果希望指定最大滞后期,则可以通过设置名称-值对参数来实现: ```matlab maxLag = 20; % 设定最大滞后期为20 figure; autocorr(data,'NumLags', maxLag); ``` 还可以获取返回值以便进一步处理: ```matlab [acf, lags, bounds] = autocorr(data); ``` 其中, - `bounds`: 置信区间的上下限,默认情况下基于95%置信水平构建。 #### 示例说明 下面给出一个具体的例子展示如何应用此功能来进行数据分析: 假设有一个名为`data`的时间序列样本, ```matlab load Data_JJapaneseYenExchangeRate.mat; % 加载示例汇率数据集 y = DataTable.YEN_BID_; % 提取日元兑美元买入价列作为目标变量 T = height(DataTable); % 获取观测次数 plot(y) % 绘制原始数据图象 title('Daily Japanese Yen Exchange Rate') xlabel('Day') ylabel('Yen per USD ($)') hold on recessionplot % 添加经济衰退阴影区域标记 hold off ``` 接着使用`autocorr()`绘制其自相关图,并查看是否存在显著的相关模式: ```matlab figure; autocorr(y) ``` 这将生成一张图表,直观呈现不同滞后阶次上的自相关程度以及相应的置信区间边界线。通过观察这些信息可以帮助判断原序列是否具有明显的短期记忆效应或其他结构特点。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值