取最后一个球

本文探讨了一种两人轮流取球的游戏策略,通过反向推理确保获胜。关键在于控制每轮取球总数为7,首次取球数决定最终胜者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2009个球,两人轮流取球,每人每次至少取2个最多5个,取到最后一个输,如果甲先取,谁将获胜?

2009个球,两人轮流取球,每人每次至少取2个最多5个,取到最后一个赢,如果甲先取,甲应当怎样取?


思路:

谁先取,随占据优势。以甲先取为例,除却第一次,中间步骤的执行过程是  乙->甲,重复执行;甲在中间过程的执行策略就是,无论乙取几个,甲将总数凑够7个(2+5)。在保证执行中间步骤策略的基础上,最后是乙取到最后的球,还是甲取到最后的球,完全取决于,甲第一取球时的策略(2009%7==0)。

如果让乙取到最后的球,那么留给乙的球数数量必须为2,则甲第一次要取5个球;如果甲自己要取到最后一个球,那么乙最后一次取球时,留给他的数量必须是7。在这种条件下,甲第一次只能不取(至少取2个最多5个),否则是没有办法达到的,因此甲没法保证取到最后一个球。


面试时,要展现的思考过程:反着推,如果让乙取到最后的球,那么留给乙的球数量必须为2,每人每次至少取2个最多5个,这个条件可以令甲保证在每次甲和乙取的总数为7,这样就可以反推,甲第一次要取的球数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值