求一个数组中右边第一个比他大的数(单调栈)

思路:

这个问题,从直觉上来讲,应当是一遍遍历,便可以解决问题。这类问题的特点是,一部分要详尽保留信息,另一部分呈现未解决问题的积累特性。

具体到这个问题,创建一个数据结构保留未解决的子问题,根据特点选择栈。

1、栈里面保留是索引,而非元素,其实这是一个很关键的地方,索引的信息要比内容多,因为可以索引本身就可以确定内容。要牢记这一特点

2、初始栈,里面为第一个元素

3、如果栈不为空,而且当前处理元素比栈顶元素大,则栈顶元素对应的第一个比它大的值,就是该元素

4、弹出栈顶元素,继续处理栈里的元素,直至为空或当前处理元素不大于栈顶元素

5、将当前元素压入栈

6、循环3~5

#include<iostream>
#include<vector>
#include<stack>
using namespace std;
vector<int> get(vector<int> a, int len)
{
	vector<int> res(len, -1);
	vector<int> temp(len);
	int index = 0;
	temp[0] = 0;
	for (int i = 1; i < len; i++)
	{
		while (index>-1 && a[i] > a[(temp[index])])
		{
			res[(temp[index])] = a[i];
			index--;
		}
		index++;
		temp[index] = i;
	}
	return res;
}

vector<int> get2(vector<int> a, int len)
{
	vector<int> res(len, -1);
	stack<int> sta;
	sta.push(0);
	for (int i = 1; i < len; i++)
	{
		while (!sta.empty() && a[i]>a[(sta.top())])
		{
			res[(sta.top())] = a[i];
			sta.pop();
		}
		sta.push(i);
	}
	return res;
}

int main()
{
	vector<int> a = { 2, 5, 3, 7, 1, 2, 8 };
	vector<int> b = get2(a, 7);
	for (int i = 0; i < 7; i++)
	{
		cout << b[i] << " ";
	}
	system("pause");
	return 0;
}


单调栈是一种常用的解决包含最大/最小值的问题的据结构,可以用于解决只有0和1的矩阵中获取只有1的最大矩阵面积问题。具体步骤如下: 1. 构建一个二维数组heights,其中heights[i][j]表示从第i行往上有多少个连续的1。 2. 对于每一行,使用单调栈维护一个递增的序列,其中栈中存储的是当前位置之前的高度递增的矩形的位置。 3. 对于每个位置(i, j),如果heights[i][j]大于栈顶元素对应的高度,则将该位置加入栈中;否则,将栈顶元素弹出,并计算以该位置为右下角的最大矩形面积。具体计算方法为:弹出栈顶元素后,当前位置的高度即为栈顶元素弹出后的栈顶元素对应的高度,而左边界则为栈顶元素对应的位置加1,右边界为当前位置减1。计算完面积后,更新最大面积值。 4. 遍历完所有位置后,返回最大面积值即可。 下面是C++代码实现: ```C++ int maximalRectangle(vector<vector<char>>& matrix) { if (matrix.empty()) return 0; int m = matrix.size(), n = matrix[0].size(); int ans = 0; vector<vector<int>> heights(m, vector<int>(n, 0)); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (matrix[i][j] == '1') { heights[i][j] = (i == 0) ? 1 : heights[i-1][j] + 1; } } } for (int i = 0; i < m; i++) { stack<int> s; for (int j = 0; j <= n; j++) { int h = (j == n) ? 0 : heights[i][j]; while (!s.empty() && h < heights[i][s.top()]) { int height = heights[i][s.top()]; s.pop(); int width = s.empty() ? j : j - s.top() - 1; ans = max(ans, height * width); } s.push(j); } } return ans; } ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值