判断是否是平衡二叉树

本文详细介绍了平衡二叉树(AVL树)的概念及其特性,包括树的高度定义、通过递归计算二叉树高度的方法,以及如何判断一棵二叉树是否为平衡二叉树。此外,还提供了一个完整的测试程序,用于创建二叉树并判断它是否为平衡二叉树。
摘要由CSDN通过智能技术生成

平衡二叉树(AVL树)是满足下面条件的二叉树:

1、是一棵空树。

2、它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

 

树的高度:也就等于树的层数(根节点位于第一层)。

 

计算二叉树的高度:用到了递归结构,树的高度是,其左子树和右子树较高的子树的高度加1,递归的终止条件是子树的根节点为空。

int deep(BiTree T)
{
	if (T == NULL) return 0;
	int leftdeep = deep(T->lchild);
	int rightdeep = deep(T->rchild);
	return leftdeep > rightdeep ? leftdeep+1 : rightdeep+1;
}
判断是否为平衡二叉树:

bool isBalanceTree(BiTree root)
{
	if (root == NULL) return true;
	int leftdeep = deep(root->lchild);  //计算左子树高度
	int rightdeep = deep(root->rchild);  //计算右子树高度
	int absdeep = leftdeep > rightdeep ? (leftdeep - rightdeep) : (rightdeep - leftdeep);  
	return (absdeep <= 1 && isBalanceTree(root->lchild) && isBalanceTree(root->rchild)); // 判断左右子树高度差是否不超过1,且左右子树是否是平衡二叉树
}
整体测试程序(利用前序遍历的方式,创建二叉树,具体见http://blog.csdn.net/bxw1992/article/details/74936906):
#include<iostream>  
using namespace std;
typedef struct btnode
{
	char data;
	struct btnode *lchild;
	struct btnode *rchild;
}btnode, *BiTree;
/*
输入序列:
AB#D##C##    平衡二叉树
AB#D#E##C##   非平衡二叉树
*/ 
void frontCreat(BiTree *T)
{
	char temp;
	cin >> temp;
	if (temp == '#')
	{
		*T = NULL;
	}
	else
	{
		*T = (btnode*)malloc(sizeof(btnode));
		(*T)->data = temp;
		frontCreat(&((*T)->lchild));
		frontCreat(&((*T)->rchild));
	}
}

void frontPrint(BiTree T)
{
	if (T == NULL) return;
	cout << T->data << " ";
	frontPrint(T->lchild);
	frontPrint(T->rchild);
}
int deep(BiTree T)
{
	if (T == NULL) return 0;
	int leftdeep = deep(T->lchild);
	int rightdeep = deep(T->rchild);
	return leftdeep > rightdeep ? leftdeep+1 : rightdeep+1;
}

bool isBalanceTree(BiTree root)
{
	if (root == NULL) return true;
	int leftdeep = deep(root->lchild);
	int rightdeep = deep(root->rchild);
	int absdeep = leftdeep > rightdeep ? (leftdeep - rightdeep) : (rightdeep - leftdeep);
	return (absdeep <= 1 && isBalanceTree(root->lchild) && isBalanceTree(root->rchild));
}
int main()
{
	BiTree T;
	frontCreat(&T);
	cout << "前序遍历" << endl;
	frontPrint(T);
	cout << endl;

	cout << deep(T) << endl;
	cout << isBalanceTree(T);
	system("pause");
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值