从文本(一行一行的数据)转成weka所需的格式
其实就是加上了Head和每行后面的标签而已。
下面是针对两个人脸库JAFFE和CMU的,
因为两个人脸库的现有数据集合的数量不同,
CMU的是 训练集:6种表情*5副 测试集:6种表情*3副
JAFFE的是 训练集:7种表情*20副 测试集:7种表情*10
包含的表情总数也不同,所以单独各自写了两个程序,
一个用来转换Training Set
一个用来转换Testing Set
这样就写了4个程序。后来师哥的实验数据,又是另一种数量的,又稍加修改了程序,这些代码大体都一样的,
未达目的,不择手段啊。。。
后来用Gabor小波,每副图片又拓展出6=(3个方向)*(2个尺度)副出来。。。。处理的数量激增啊。。
首先这个是CMU的训练集(6种表情*5副=30),得到PCA特征后的转换程序
///*******************************
//作者:David Bao
//时间:2012年3月15日
//描述:
// 利用matlab中的PCA程序,将30张图片进行合成一个大矩阵,进行pca操作后,得到一个大矩阵,每一行为每幅图的pca特征
// 6种表情{angry,disgust,fear,sadness,smile,surprise}
// 每种表情5个图片
// 共30副
// 此程序专门针对train集!
// 矩阵大小为:30*200 导入成为arff格式
//功能:将PCA得出的文本数据转成weka所需的arff格式
/