/*
假设前序遍历为 adbgcefh, 中序遍历为 dgbaechf
前序遍历是先访问根节点,然后再访问子树的,而中序遍历则先访问左子树再访问根节点
那么把前序的 a 取出来,然后查找 a 在中序遍历中的位置就得到 dgb a echf
那么我们就知道 dgb 是左子树 echf 是右子树,因为数量要吻合
所以前序中相应的 dbg 是左子树 cefh 是右子树
然后就变成了一个递归的过程
*/
#include <iostream>
#include <string>
using namespace std;
int find(const string &str, char c)
{
for (int i = 0; i < str.size(); ++ i)
{
if (c == str[i])
{
return i;
}
}
return -1;
}
//根据前序和中序 得到 后序
bool PreMidToBack(const string &pre, const string &mid)
{
if (pre.size() == 0)
{
return false;
}
if (pre.size() == 1)
{
cout << pre;
return true;
}
//根节点是第一个元素
int k = find(mid, pre[0]);
string pretmp = pre.substr(1, k);
string midtmp = mid.substr(0, k);
PreMid(pretmp, midtmp);
pretmp = pre.substr(k + 1, pre.size() - k - 1);
midtmp = mid.substr(k + 1, mid.size() - k - 1);
PreMid(pretmp, midtmp);
//变成后序遍历要最后输出节点的值
cout << pre[0];
}
//根据中序和后序 得到 前序
bool BackMidToPre(const string &back, const string &mid)
{
if (back.size() == 0)
{
return false;
}
if (back.size() == 1)
{
cout << back;
return true;
}
//根节点是最后一个元素
int k = find(mid, back[back.size() - 1]);
//变成前序遍历要先输出节点的值
cout << back[back.size() - 1];
string backTmp = back.substr(0, k);
string midTmp = mid.substr(0, k);
BackMid(backTmp, midTmp);
backTmp = back.substr(k, back.size() - k - 1);
midTmp = mid.substr(k + 1, mid.size() - k - 1);
BackMid(backTmp, midTmp);
}
int main()
{
string pre("adbgcefh");
string mid("dgbaechf");
PreMidToBack(pre, mid);
cout << endl;
}
【二叉树遍历】有前序遍历 和 中序遍历 求 后序遍历
最新推荐文章于 2023-10-20 17:57:33 发布