DataWhale数据分析第二章第四节:数据可视化课程

本文介绍了使用Python的Matplotlib库进行数据可视化的基础,通过泰坦尼克号数据集展示了男女生存人数的柱状图、生存与死亡比例的堆叠柱状图、不同票价与存活人数的折线图、仓位等级与生存死亡人数的分布,以及年龄与存活率的关系。观察到高仓位等级乘客的存活率更高,男性和女性的生存人数存在明显差异,年龄和票价等因素对生存率有显著影响。
摘要由CSDN通过智能技术生成

**复习:**回顾学习完第一章,我们对泰坦尼克号数据有了基本的了解,也学到了一些基本的统计方法,第二章中我们学习了数据的清理和重构,使得数据更加的易于理解;今天我们要学习的是第二章第三节:数据可视化,主要给大家介绍一下Python数据可视化库Matplotlib,在本章学习中,你也许会觉得数据很有趣。在打比赛的过程中,数据可视化可以让我们更好的看到每一个关键步骤的结果如何,可以用来优化方案,是一个很有用的技巧。

2 第二章:数据可视化

开始之前,导入numpy、pandas以及matplotlib包和数据
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df= pd.read_csv('result.csv')
df.head(2)
Unnamed: 0 PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked
0 0 1 0 3 Braund, Mr. Owen Harris male 22.0 1 0 A/5 21171 7.2500 NaN S
1 1 2 1 1 Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0 1 0 PC 17599 71.2833 C85 C

2.7 如何让人一眼看懂你的数据?

《Python for Data Analysis》第九章

2.7.1 任务一:跟着书本第九章,了解matplotlib,自己创建一个数据项,对其进行基本可视化

【思考】最基本的可视化图案有哪些?分别适用于那些场景?(比如折线图适合可视化某个属性值随时间变化的走势)

#思考回答
#这一部分需要了解可视化图案的的逻辑,知道什么样的图案可以表达什么样的信号b

2.7.2 任务二:可视化展示泰坦尼克号数据集中男女中生存人数分布情况(用柱状图试试)。
df['Survived'].groupby(df['Sex']).sum().plot
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

By_Liu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值