DataWhale数据分析第二章第四节:数据可视化课程

本文介绍了使用Python的Matplotlib库进行数据可视化的基础,通过泰坦尼克号数据集展示了男女生存人数的柱状图、生存与死亡比例的堆叠柱状图、不同票价与存活人数的折线图、仓位等级与生存死亡人数的分布,以及年龄与存活率的关系。观察到高仓位等级乘客的存活率更高,男性和女性的生存人数存在明显差异,年龄和票价等因素对生存率有显著影响。
摘要由CSDN通过智能技术生成

**复习:**回顾学习完第一章,我们对泰坦尼克号数据有了基本的了解,也学到了一些基本的统计方法,第二章中我们学习了数据的清理和重构,使得数据更加的易于理解;今天我们要学习的是第二章第三节:数据可视化,主要给大家介绍一下Python数据可视化库Matplotlib,在本章学习中,你也许会觉得数据很有趣。在打比赛的过程中,数据可视化可以让我们更好的看到每一个关键步骤的结果如何,可以用来优化方案,是一个很有用的技巧。

2 第二章:数据可视化

开始之前,导入numpy、pandas以及matplotlib包和数据
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
df= pd.read_csv('result.csv')
df.head(2)
Unnamed: 0PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
00103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
11211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C

2.7 如何让人一眼看懂你的数据?

《Python for Data Analysis》第九章

2.7.1 任务一:跟着书本第九章,了解matplotlib,自己创建一个数据项,对其进行基本可视化

【思考】最基本的可视化图案有哪些?分别适用于那些场景?(比如折线图适合可视化某个属性值随时间变化的走势)

#思考回答
#这一部分需要了解可视化图案的的逻辑,知道什么样的图案可以表达什么样的信号b

2.7.2 任务二:可视化展示泰坦尼克号数据集中男女中生存人数分布情况(用柱状图试试)。
df['Survived'].groupby(df['Sex']).sum().plot.bar()
<AxesSubplot:xlabel='Sex'>

在这里插入图片描述

【思考】计算出泰坦尼克号数据集中男女中死亡人数,并可视化展示?如何和男女生存人数可视化柱状图结合到一起?看到你的数据可视化,说说你的第一感受(比如:你一眼看出男生存活人数更多,那么性别可能会影响存活率)。

2.7.3 任务三:可视化展示泰坦尼克号数据集中男女中生存人与死亡人数的比例图(用柱状图试试)。
#代码编写
# 提示:计算男女中死亡人数 1表示生存,0表示死亡
df.groupby(['Sex','Survived'])['Survived'].count().unstack().plot(kind='bar',stacked='True')

plt.title('survived_count')
plt.ylabel('count')

Text(0, 0.5, 'count')

在这里插入图片描述

【提示】男女这两个数据轴,存活和死亡人数按比例用柱状图表示

2.7.4 任务四:可视化展示泰坦尼克号数据集中不同票价的人生存和死亡人数分布情况。(用折线图试试)(横轴是不同票价,纵轴是存活人数)

【提示】对于这种统计性质的且用折线表示的数据,你可以考虑将数据排序或者不排序来分别表示。看看你能发现什么?

#代码编写
# 计算不同票价中生存与死亡人数 1表示生存,0表示死亡
fare_sur=df.groupby(['Fare'])['Survived'].value_counts().sort_values(ascending=False)
fare_sur
Fare     Survived
8.0500   0           38
7.8958   0           37
13.0000  0           26
7.7500   0           22
13.0000  1           16
                     ..
7.7417   0            1
26.2833  1            1
7.7375   1            1
26.3875  1            1
22.5250  0            1
Name: Survived, Length: 330, dtype: int64
fig = plt.figure(figsize=(15,15))
fare_sur.plot(grid=True) #网格安排一下
plt.legend() #看下图例 
<matplotlib.legend.Legend at 0x7f9ad5a8c670>

在这里插入图片描述

2.7.5 任务五:可视化展示泰坦尼克号数据集中不同仓位等级的人生存和死亡人员的分布情况。(用柱状图试试)
#代码编写
# 1表示生存,0表示死亡

sur_pclass =df.groupby(['Pclass','Survived'])['Survived'].count().unstack().plot(kind='bar',stacked='True')

在这里插入图片描述

conda install seaborn
Collecting package metadata (current_repodata.json): done
Solving environment: done

# All requested packages already installed.


Note: you may need to restart the kernel to use updated packages.
import seaborn as sns
sns.countplot(x="Pclass", hue="Survived", data=df)
<AxesSubplot:xlabel='Pclass', ylabel='count'>

在这里插入图片描述

【思考】看到这个前面几个数据可视化,说说你的第一感受和你的总结

#思考题回答
仓位登记越高,存活率越高

2.7.6 任务六:可视化展示泰坦尼克号数据集中不同年龄的人生存与死亡人数分布情况。(不限表达方式)
import seaborn as sns
facet = sns.FacetGrid(df, hue="Survived",aspect=3)
facet.map(sns.kdeplot,'Age',shade= True)
facet.set(xlim=(0, df['Age'].max()))
facet.add_legend()
<seaborn.axisgrid.FacetGrid at 0x7f9ad659c520>

在这里插入图片描述

2.7.7 任务七:可视化展示泰坦尼克号数据集中不同仓位等级的人年龄分布情况。(用折线图试试)
#代码编写
df.Age[df.Pclass == 1].plot(kind='kde')
df.Age[df.Pclass == 2].plot(kind='kde')
df.Age[df.Pclass == 3].plot(kind='kde')
plt.xlabel("age")
plt.legend((1,2,3),loc="best")
<matplotlib.legend.Legend at 0x7f9ad8d8ef40>

在这里插入图片描述

【思考】上面所有可视化的例子做一个总体的分析,你看看你能不能有自己发现

【总结】到这里,我们的可视化就告一段落啦,如果你对数据可视化极其感兴趣,你还可以了解一下其他可视化模块,如:pyecharts,bokeh等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

By_Liu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值