FBCNN:AI 驱动的 JPEG 伪影消除技术
本文介绍了 FBCNN,一种最新的人工智能技术,用于消除 JPEG 图片中的压缩伪影。
JPEG 格式因其文件体积小而成为现代世界最常见的图片格式,但其 10:1 的有损压缩率会导致图片细节损失,从而产生被称为“JPEG 伪影”的奇怪像素。尽管 JPEG 的目的是在保持视觉效果接近原图的前提下压缩图片,但当我们面对压缩后的图片,尤其是重要图片时,我们还是希望获得更清晰的图像。
FBCNN 的出现为我们提供了解决方案。它专注于消除 JPEG 伪影,就像消除图片中的噪点或清理边缘一样,但 FBCNN 更像是将图片恢复到原始状态。它不会增加像素数量,而是纯粹提升图像清晰度。
与其他旧技术相比,FBCNN 表现出色,效果接近超分辨率,这得益于其恢复过程的准确性和与原始图片的相似性。更重要的是,FBCNN 是第一个解决多重压缩问题的方法。现实中,大多数网络图片都会经过多次压缩。
此外,FBCNN 还提供了一个“质量因子”参数,允许用户控制输出强度。该参数的范围为 0 到 100,0 代表最强,100 代表最弱。在低质量因子下,FBCNN 会平滑掉很多细节,使高对比度区域变得模糊。
在实际应用中,FBCNN 在消除包含明显文本伪影的图片中的伪影方面表现出色。在质量因子为 30 到 50 时,块状轮廓通常会被消除;在 50 到 70 时,块状 JPEG 伪影会消失或变得难以察觉。对于细节较少的插图,即使在非常低的质量因子下也能取得不错的效果,因为这些图片并不依赖于纹理。然而,对于细节丰富的现实图片,低质量因子会导致纹理或细节消失,显得过于平滑。
总而言之,FBCNN 是一种强大的新技术,能够有效地消除 JPEG 伪影,提升图片清晰度,为我们提供更优质的视觉体验。
JPEG 伪影去除比过去几篇论文有了很大的改进。这篇论文的设计是为了在野外进行测试,因此您可以看到压缩图像的惊人清晰度!是时候告别那些压缩图像上的糟糕黑点了。走向灵活的盲 JPEG 伪影去除[论文] https://arxiv.org/abs/2109.14573[官方 GitHub] https://github.com/jiaxi-jiang/FBCNN[教程 GitHub] https://github.com/bycloudai/FBCNN-Windows[安装教程] https://youtu.be/ZqE8E3SDOoQ