最大M子段和 辅助数组降低时间复杂度

  给定n个数求这n个数划分成互不相交的m段的最大m子段和。
  经典的动态规划优化的问题。设f(i, j)表示前i个数划分成j段,且包括第i个数的最大m子段和,那么有dp方程:
    f(i, j) = max { f(i - 1, j) + v[i], max {f(k, j - 1) + v[i]}(k = j - 1 ... i - 1) }
  也就是说第i个数要么自己划到第j段,要么和前一个数一起划到第j段里面,转移是O(n)的,总复杂度O(n * n * m)。
  可以引入一个辅助数组来优化转移。设g(i, j)表示前i个数划分成j段的最大子段和(注意第i个数未必在j段里面),那么递推关系如下:
    g(i, j) = max{g(i - 1, j), f(i, j)},分是否加入第i个数来转移
  这样f的递推关系就变成:
    f(i, j) = max{f(i - 1, j), g(i - 1, j - 1)} + v[i],转移变成了O(1)
  这样最后的结果就是g[n][m],通过引入辅助数组巧妙的优化了转移。实现的时候可以用一维数组,速度很快。

附HDU 1024题目代码:
#include < cstdio >
#include
< algorithm >
using namespace std;
const int N = 1000010 , INF = 0x3fffffff ;

int f[N], g[N], a[N];

int max_sum( int m, int n)
{
   
int i, j, t;
   
for (i = 1 ; i <= n; i ++ )
    {
        t
= min(i, m);
       
for (j = 1 ; j <= t; j ++ )
        {
            f[j]
= max(f[j], g[j - 1 ]) + a[i];
            g[j
- 1 ] >?= f[j - 1 ];
        }
        g[j
- 1 ] >?= f[j - 1 ];
    }
   
return g[m];
}

int main()
{
   
int m, n;

   
while (scanf( " %d %d " , & m, & n) == 2 && m && n)
    {
       
for ( int i = 1 ; i <= n; i ++ )
        {
            f[i]
= g[i] = - INF;
            scanf(
" %d " , & a[i]);
        }
        printf(
" %d\n " , max_sum(m, n));
    }

   
return 0 ;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值