【AI学习】DeepSeek为什么强?

个人的一些思考,请大家批评指正。

这个问题,首先当然是在恰当的时间出现,模型性能跻身世界一流,又开源,戳破了OpenAI和英伟达潜心构造的叙事逻辑。

DeepSeek为什么强?四个方面:模型的智能水平、训练成本、推理成本和用户体验。

一、DeepSeek的智能水平

DeepSeek V3的智能水平,技术报告展现的性能对比图:

在这里插入图片描述

是什么导致了DeepSeek的模型性能,是模型架构吗?MoE、MLA这些?或许有一点关系,但是应该不是主要因素,决定模型性能的,主要应该是DeepSeek没有开源的内容——数据集以及训练时的数据配比。

去年看到OpenAI的一名员工的博客,内容摘录如下:


数据即模型!来自 OpenAI 模型炼丹师的 insight!人脑也是一样,其思想无限逼近于其接收到的信息;你灌输什么,他就呈现什么!

作者在 OpenAI 工作近一年,观察到生成模型的训练过程显示模型行为主要由数据集决定,而非架构、超参数或优化器选择。
🎯 Key Points

  • 作者训练了大量生成模型;

  • 观察到所有训练运行之间存在相似性;

  • 模型高度逼近其数据集,学习到的不仅是狗或猫的概念,还有不重要的分布间隙;

  • 在相同数据集上训练足够长时间,任何具有足够权重和训练时间的模型都会收敛到相同点;

  • 大型扩散卷积网络和 ViT 生成器会生成相同的图像;

  • 自回归采样和扩散方法也会生成相同的图像;

  • 这表明模型行为不由架构、超参数或优化器选择决定,而是由数据集决定;

  • 其他因素只是有效地将计算交付给逼近数据集的手段;

  • 当提到“Lambda”、“ChatGPT”、“Bard”或“Claude”时,指的是数据集,而不是模型权重。


LLM预训练scaling law的发展,一开始强调模型要大,然后是数据要多,再后来就是强调数据的质量。数据质量方面,一方面是强调数据质量,通过专家撰写高质量数据、以及各种数据筛选方法和工具,保证数据质量是第一位的;第二方面,不断增加数学、逻辑、代码等能够提升大模型理性能力的数据配比比例,尤其在模型训练退火阶段,调整数据混合配比,增加高质量数据等等。

总之,我的猜测,DeepSeek V3的性能好,主要是因为数据集的原因。

DeepSeek R1的性能好,首先来源于DeepSeek V3底座模型的能力够,其次是DeepSeek R1成功摸索了一套RL方法,另外,推理成本低也会导致推理的性能增强。

二、DeepSeek的训练成本和推理成本

DeepSeek V3的训练成本,那个600万美金,从一开始,我的观点就是听听得了,只是成功训练一次的成本,不包括数据集、探索以及人力成本。AI这个事,可能最费劲的是数据集,相比数据,训练应该在其次。当然,不可否认,DeepSeek的训练成本确实低,这个确实是因为模型架构、以及训练方法。DeepSeek的训练成本低,主要是MoE和训练的低精度技术。MLA并不降低训练成本,只是推理成本低。模型的MTP,主要作用是训练更加稳定,当然,训练稳定了训练成本也会更低,细看DeepSeek V3的技术报告,看不出MTP提升模型性能,尤其的最大尺寸的模型性能。LLM的训练是一个细致活,还有其他的因素,包括PTX的使用、通信的优化等等。

DeepSeek V3的推理成本低,模型架构中的MLA、MoE和MTP等技术,应该均有贡献。

三、DeepSeek的用户体验

DeepSeek的用户体验方面嘛。首先说,时尚这个东西,之所以称为时尚,就在于难于预测。体验首先来自民心,DeepSeek撼动了美国AI界,提升了国人信心,就已经获得了最大民心。

对于用户体验,具体来说,看到有说DeepSeek说话犀利、有情绪价值,不像机器人,更像人。网上关于周鸿祎、以及为什么DeepSeek来自初创公司而不是互联网大厂这些问题,我也试了,确实可以复刻,确实犀利,敢说!但是呢,这里的原因,恐怕不是因为模型的智能水平,而是模型的最后的对齐方面,在模型的后训练方面,模型的输出对齐到了这种风格。也说明DeepSeek团队确实有性格。但是,这种风格,对于其他的LLM团队,应该不难,只是敢不敢愿不愿的问题。

### 微调 DeepSeek 的作用 微调 DeepSeek 主要是为了让模型能够更好地适应特定的任务需求或数据集特性。通过引入少量标注的数据并调整预训练模型中的参数,可以显著提高模型在具体任务上的表现[^1]。 对于像 DeepSeek-R1 和 DeepSeek-7B-chat 这样的大型语言模型来说,在消费级硬件上利用 LoRA(低秩自适应)等方法进行微调不仅降低了计算资源的要求,还使得个人开发者也能参与到高性能AI系统的定制化开发中来[^2]。 此外,基于 transformers 及 peft 等框架对 DeepSeek 模型实施 Lora 微调,则进一步简化了这一过程的技术门槛,并增强了灵活性与效率[^3]。 ### 应用场景 #### 自然语言处理领域 - **情感分析**:通过对特定行业的评论文本进行微调,使 DeepSeek 更加精准地识别正面、负面情绪倾向。 - **机器翻译**:针对某些小语种或是专业术语丰富的文档实现高质量的自动翻译服务。 #### 编程辅助工具构建 - 开发者可以通过对自己项目代码库的学习,创建个性化的编程助手,提供更贴合实际工作的建议和支持。 #### 行业专用对话机器人打造 - 结合企业内部的知识谱资料,经过针对性训练后的 DeepSeek 能够作为客服代表解答常见问题,甚至参与复杂业务流程咨询。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("deepseek-model-name") model = AutoModelForCausalLM.from_pretrained("deepseek-model-name") def fine_tune_deepseek(training_data_path): # 加载训练数据... optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) for epoch in range(num_epochs): model.train() outputs = model(**inputs) loss = outputs.loss loss.backward() optimizer.step() optimizer.zero_grad() fine_tune_deepseek('path_to_your_training_data') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bylander

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值