
AI学习
文章平均质量分 84
bylander
这个作者很懒,什么都没留下…
展开
-
【AI学习】OpenAI:《A practical guide to building agents》(中文介绍与原文)
OpenAI最新发布《A practical guide to building agents》,比较有指导意义,做一个介绍。原创 2025-04-18 22:46:08 · 1073 阅读 · 0 评论 -
【AI学习】NVIDIA Sionna平台介绍:《Sionna: An Open-Source Library for Next-Generation Physical Layer Research》
Sionna是NVIDIA推出的面向6G无线通信物理层研究的开源库,为6G的技术研究(尤其是AI方面)提供了全新工具,非常有价值。下面对Sionna平台进行介绍。原创 2025-04-18 22:37:57 · 1014 阅读 · 0 评论 -
【AI学习】李宏毅老师讲AI Agent摘要
在b站听了李宏毅2025最新的AI Agent教程,简单易懂,而且紧跟发展,有大量最新的研究进展。原创 2025-04-15 17:09:40 · 226 阅读 · 0 评论 -
【AI学习】初步了解Gradio
Gradio 是一个开源的 Python 库,专注于快速构建交互式 Web 界面,特别适用于机器学习模型、数据科学项目或任意 Python 函数的演示与部署。它通过极简的代码实现前后端一体化,无需前端开发经验即可创建功能丰富的应用。原创 2025-04-07 21:43:18 · 622 阅读 · 0 评论 -
【AI学习】初步了解TRL
TRL(Transformer Reinforcement Learning) 是由 Hugging Face 开发的一套基于强化学习(Reinforcement Learning, RL)的训练工具,专门用于优化和微调大规模语言模型(如 GPT、LLaMA 等)。它结合了 PPO(Proximal Policy Optimization) 等强化学习算法,使开发者能够高效地对预训练语言模型进行 RL 微调,以优化特定目标(如人类偏好对齐、任务性能提升等)。原创 2025-04-07 21:36:19 · 829 阅读 · 0 评论 -
【AI学习】MCP的简单快速理解
最近,AI界最火热的恐怕就是MCP了。作为一个新的知识点,学习的开始,先摘录一些信息,从发展历程、通俗介绍到具体案例,这样可以快速理解MCP。原创 2025-04-04 22:45:56 · 839 阅读 · 0 评论 -
【论文阅读】RadioDiff: Effective Generative Diffusion Model for Sampling-Free RadioMap Construction
RadioDiff模型对无线通信领域研究具有显著的促进作用。它为6G网络等提供了精准的无线环境信息,助力网络优化与部署。在智能交通、远程医疗等领域,能保障应用的稳定运行。其高效、精准的无线地图构建能力,为无线通信新技术的研发提供了有力支持,推动了无线通信技术的创新与发展,加速了6G网络等应用场景的实现进程。原创 2025-03-29 23:00:15 · 1475 阅读 · 0 评论 -
【AI绘画】大卫• 霍克尼与胡安·米罗的相遇
若以霍克尼的具象语言重新演绎米罗的抽象符号,两种风格的碰撞的效果?原创 2025-03-28 22:48:30 · 639 阅读 · 0 评论 -
【AI绘画】干刻版画的建模尝试
干刻(Drypoint)是一种独特的版画雕刻技艺,其核心在于以刀代笔,直接在金属版(多为铜版或锌版)表面进行雕刻。与需要化学腐蚀的蚀刻法不同,干刻仅依靠物理刻痕完成创作,雕刻师需手持尖锐的钢针,通过手腕力量在版面上划出深浅不一的线条。这种技法最显著的特征在于刻痕边缘会翻起金属毛边(Burr),当油墨填入凹槽后,毛边会吸附更多颜料,最终在印刷时形成朦胧的灰调与柔和的过渡,赋予画面独特的颗粒感和呼吸感原创 2025-03-22 18:27:22 · 336 阅读 · 0 评论 -
【AI学习】从混元T1看Mamba与Transformer的融合
SSM-Transformer混合架构。具体做法是将自注意力和MLP层添加到Mamba架构中。56层的Mamba-2-Hybrid中包含4个(7.1%)自注意力层,24 个(42.9%)Mamba-2层和28个(50%)MLP 层,其中Mamba-2层使用与Mamba-2模型相同的参数。消融实验的结果还显示,混合模型中不添加旋转位置编码(RoPE)能达到更好的下游任务性能,而且Mamba层、自注意力层、MLP层的顺序也会影响模型能力。具体来说,Mamba层必须出现在架构的开头,以确保模型自然地学习到位置信息原创 2025-03-22 18:21:09 · 1086 阅读 · 0 评论 -
【AI工具】夸克AI的深度思考和AI总结试用
初步尝试夸克AI的深度思考和AI总结试用原创 2025-03-21 09:32:09 · 2148 阅读 · 0 评论 -
【AI工具】试用秘塔AI搜索的“生成互动网页”功能
试用了秘塔AI搜索的“生成互动网页”功能,简单实用!原创 2025-03-20 22:31:29 · 953 阅读 · 0 评论 -
【AI学习】从RLHF到GRPO
最近学习了从RLHF到GRPO的发展变化原创 2025-03-13 09:02:01 · 182 阅读 · 0 评论 -
【AI非常道】二零二五年二月,AI非常道
有关AI非常之言语,即AI非常道!原创 2025-03-13 09:00:00 · 617 阅读 · 0 评论 -
【AI学习】关于Kimi的MoBA
MoBA论文一作、知乎答主【Andrew Lu】的回答详述了研发过程中三次踩坑的经起伏历,被知友形容为「思维链背后的思维链开源」原创 2025-03-12 22:16:44 · 210 阅读 · 0 评论 -
【AI绘画】“木刻时光·细密风”模型发布
这一版是针对黑白木刻风格进行Lora微调的第三版模型。对比第一版,能够刻画的更加细腻,泛化性也获得大幅提升。原创 2025-03-06 22:28:15 · 420 阅读 · 0 评论 -
【AI学习】DeepSeek的发展与行业应对策略
一看AI的技术边界,准确判断AI真的能做什么;二看问题看增量,看自己行业、自己周边的问题和增量机会。原创 2025-03-06 22:23:50 · 928 阅读 · 0 评论 -
【AI绘画】黑白木刻之希腊神话系列(一丹一世界)
在魔塔社区的AIGC专区,通过Lora技术训练了一个黑白木刻风格的模型。再通过Deepseek生成希腊神话的提示词。原创 2025-03-02 21:33:22 · 811 阅读 · 0 评论 -
【AI绘画】大卫• 霍克尼风格——自然的魔法(一丹一世界)
最近在魔塔社区稍微学习了通过Lora技术生成图片,尝试一下大卫• 霍克尼的风格原创 2025-02-21 22:02:12 · 367 阅读 · 0 评论 -
【AI学习】DeepSeek-R1-Distill的意义和影响
在DeepSeek R1的技术报告中,还有这样一个技术:蒸馏赋予小模型推理能力。这项技术的意义和影响是什么?原创 2025-02-12 22:12:11 · 1063 阅读 · 0 评论 -
【AI学习】DeepSeek为什么这么火爆?解密梁文锋的深谋远虑
重新回头,复盘一下DeepSeek的发展思路,以及未来的发展策略。越想越佩服梁文锋,思路之缜密,令人震惊!原创 2025-02-12 15:28:02 · 1160 阅读 · 0 评论 -
【AI学习】LLM的发展方向
个人觉得,可能还有两个scaling方向,就是训练成本和推理成本的持续降低,或许这依赖于新的更高效——同时也能scaling的架构原创 2025-02-10 22:05:35 · 415 阅读 · 0 评论 -
【AI学习】DeepSeek为什么强?
DeepSeek为什么强?四个方面:模型的智能水平、训练成本、推理成本和用户体验。原创 2025-02-10 22:00:02 · 1616 阅读 · 0 评论 -
【AI学习】关于 DeepSeek-R1的几个流程图
关于DeepSeek-R1的几个流程图,清晰易懂形象直观原创 2025-02-08 23:11:35 · 3021 阅读 · 0 评论 -
【AI工具】夸克AI试用:分析DeepSeek-V3技术报告
DeepSeek-V3是一个拥有6710亿参数的专家混合(MoE)语言模型,每次生成一个标记时激活370亿参数。为了实现高效推理和经济型训练,DeepSeek-V3采用了多头潜在注意力(MLA)和DeepSeekMoE架构,这两种架构在DeepSeek-V2中得到了充分验证。此外,DeepSeek-V3率先采用无辅助损失策略进行负载均衡,并设置了多标记预测训练目标以实现更强大的性能。原创 2025-01-19 08:00:00 · 4411 阅读 · 0 评论 -
【AI学习】地平线首席架构师苏箐关于自动驾驶的演讲
在地平线智驾科技畅想日上,地平线副总裁兼首席架构师苏箐(前华为智驾负责人)做了即兴演讲,以下是其演讲的主要内容:对自动驾驶行业的看法自动驾驶的难度与挑战:苏箐表示自动驾驶非常难,他做自动驾驶到现在已经快抑郁了,很多优秀的同学都改行了,去做具身智能机器人。他认为自动驾驶是第一个在物理世界跟人交互的机器人,是在一个半规则和半非规则的场景里面的东西,如果连自动驾驶都搞不定,去做完全是非结构化的机器人是不可能的。自动驾驶的价值拐点:苏箐认为自动驾驶系统的竞争对手是人类本身,其价值是一个拐点式的价值。原创 2025-01-15 11:30:33 · 1131 阅读 · 0 评论 -
【AI学习】Transformer深入学习(二):从MHA、MQA、GQA到MLA
从MHA、MQA、GQA到MLA的简单分析和对比原创 2025-01-04 23:30:14 · 1853 阅读 · 0 评论 -
【AI学习】Hinton老爷子的有趣观点
在人类的记忆模式中,编造事情和回忆事情之间没有明确的界限,记忆某事本质上就是编织一些看似合理的东西原创 2025-01-01 23:26:13 · 807 阅读 · 0 评论 -
【AI学习】2024年末一些AI总结的摘录
看到不少的总结,边摘录边思考。尤其是这句话:“人类真正的问题是:我们拥有旧石器时代的情感、中世纪的制度和神一般的技术”。原创 2025-01-01 21:57:11 · 1250 阅读 · 0 评论 -
【AI学习】DeepSeek-V3 技术报告学习:总体架构
翻了一下DeepSeek-V3 技术报告学习,太长,只是大概翻了一下,其中Multi-Token Prediction的技术就很亮眼。原创 2024-12-28 22:17:05 · 8749 阅读 · 0 评论 -
我的创作纪念日:一个AI小白的年度经历
对于AI的学习,陆陆续续,也持续了一年多了,从一个完全的小白,到能够理解最前沿的技术原创 2024-12-28 11:18:12 · 715 阅读 · 0 评论 -
【AI学习】Huggingface复刻Test-time Compute Scaling技术
OpenAI ChatGPT o1 背后的关键技术Test-time Compute Scaling,Huggingface实现并开源了!Hugging Face 团队发布了一篇关于“开源模型中的推理阶段计算扩展”(Test-time Compute Scaling) 的研究文章。Hugging Face 团队通过复现 DeepMind 等研究成果,通过测试时计算扩展(test-time compute scaling)来提升小模型的性能,使其在某些情况下超越更大规模的模型。原创 2024-12-21 22:17:38 · 1699 阅读 · 0 评论 -
【AI学习】OpenAI推出o3,向AGI迈出关键一步
2024年12月21日,OpenAI在其为期12天发布会活动的最后一天,正式发布了备受期待的o3系列模型,包括o3和o3-mini。o3 是一个非常强大的模型,在编码、数学以及 ARC-AGI 基准测试等多个基准上超过了 OpenAI 此前的 o1 模型(o1得分25%,o3得分87.5%)。o3-mini 是 o3 更经济高效且性能导向的版本,在成本和延迟方面比 o1-mini 低得多,同时提供类似的功能。原创 2024-12-21 21:39:36 · 1348 阅读 · 0 评论 -
【AI学习】OpenAI研究员Noam Brown:推理计算让我们重回“GPT-2”时代
作为O1项目的核心成员,他从一线研究者的视角,详细阐述了推理计算扩展的一些思考。和Ilya 讲预训练结束的主要原因是数据耗尽原因不同,Noam则强掉了经济性因素——预训练的扩展现在太贵太复杂了,所以难以为继,而推理计算则正处于当年的”GPT-2“阶段,方兴未艾。对于Noam预测,未来可能会出现一个统一模型,这个论点我还是有点怀疑,或者如同生物进化一样,更多类似的智能组织在一起,更为合理。Noam认为,学术界在资源受限的情况下,应该专注于探索具备长期潜力的新技术,而不是在尖端领域与业界竞争。原创 2024-12-18 06:00:00 · 389 阅读 · 0 评论 -
【AI学习】Mamba学习(二十一):Mamba发展回顾
Mamba的发展历程经历HiPPO->S4->S6演化而来。本篇做一个简单的回顾,再结合一个RNN的优化案例,更清晰地看明Mamba的思路。原创 2024-12-08 22:30:06 · 930 阅读 · 0 评论 -
【AI学习】苹果技术报告《Apple Intelligence Foundation Language Models》
这篇文章介绍了苹果公司开发的基础语言模型(Apple Foundation Language Models,简称AFM),这些模型旨在为苹果智能(Apple Intelligence)功能提供支持。文章详细描述了这些模型的架构、训练过程、优化方法以及评估结果,并强调了负责任的人工智能(Responsible AI)原则在模型开发过程中的应用。原创 2024-12-08 22:29:29 · 1471 阅读 · 0 评论 -
【AI学习】Mamba学习(二十):Mamba是一种线性注意力
理解Mamba的一个维度是从RNN出发,另一个维度是从线性注意力的角度。原创 2024-12-07 23:24:10 · 963 阅读 · 0 评论 -
【AI学习】Mamba学习(十九):关于S4-FouT
文章推导出了HiPPO框架的一个更一般和直观的公式,它为S4提供了一个简单的数学解释,即通过指数扭曲的Legendre多项式(exponentially-warped Legendre polynomials)分解来捕获长期依赖关系。我们的推广引入了一个理论上丰富的SSM类别,也让我们推导出了更直观的S4变体,用于其他基底,如傅里叶基底,并解释了训练S4的其他方面,例如如何初始化重要的时间尺度参数。原创 2024-12-07 23:21:53 · 888 阅读 · 0 评论 -
【AI学习】Mamba学习(十八):S6的硬件感知设计
对于S6模型的硬件感知设计,尤其是所谓的并行扫描,看论文没有看清楚,查了相关博客,再进行一下梳理。原创 2024-11-26 22:45:32 · 1634 阅读 · 0 评论 -
【AI学习】Mamba学习(十七):《Mamba: Linear-Time Sequence Modeling with Selective State Spaces》
本文对《Mamba: Linear-Time Sequence Modeling with Selective State Spaces》这篇论文进行了完整学习原创 2024-11-26 21:58:19 · 1170 阅读 · 0 评论