csr_matrix参数解析

压缩稀疏矩阵构造时的参数从官网看不明白,参考如下:

indptr = np.array([0, 2, 3, 6])
indices = np.array([0, 2, 2, 0, 1, 2])
data = np.array([1, 2, 3, 4, 5, 6])
csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])

(注:行下标和列下标均从0开始)
data 表示 元数据 显然为1, 2, 3, 4, 5, 6
shape 表示 矩阵的形状 为 3 * 3
indices 表示 各个数据在各行的下标, 从该数据我们可以知道:数据1在某行的0位置处, 数据2在某行的2位置处,6在某行的2位置处。
而各个数据在哪一行就要通过indptr参数得到的
indptr 表示每行数据的个数:[0 2 3 6]表示从第0行开始数据的个数,0表示默认起始点,0之后有几个数字就表示有几行,第一个数字2表示第一行有2 - 0 = 2个数字,因而数字1,2都第0行,第二行有3 - 2 = 1个数字,因而数字3在第1行,以此类推,我们能够知道所有数字的行号
Example: 数字6 ,indptr推出在第2行,indices推出在第2列。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值