Python3.6 openCV3.4.3车牌自动识别

算法思想来自于网上资源,先使用图像边缘和车牌颜色定位车牌,再识别字符。车牌定位在predict方法中,为说明清楚,完成代码和测试后,加了很多注释,请参看源码。车牌字符识别也在predict方法中,请参看源码中的注释,需要说明的是,车牌字符识别使用的算法是opencv的SVM, opencv的SVM使用代码来自于opencv附带的sample,StatModel类和SVM类都是sample中的代码。SVM训练使用的训练样本来自于github上的EasyPR的c++版本。由于训练样本有限,你测试时会发现,车牌字符识别,可能存在误差,尤其是第一个中文字符出现的误差概率较大。源码中,我上传了EasyPR中的训练样本,在train\目录下,如果要重新训练请解压在当前目录下,并删除原始训练数据文件svm.dat和svmchinese.dat。

开发工具pycharm2018  Python3.6 openCV3.4.3

surface.py界面文件代码如下

import tkinter as tk
from tkinter.filedialog import *
from tkinter import ttk
import predict
import cv2
from PIL import Image, ImageTk
import threading
import time



class Surface(ttk.Frame):
   pic_path = ""
   viewhigh = 600
   viewwide = 600
   update_time = 0
   thread = None
   thread_run = False
   camera = None
   color_transform = {"green":("绿牌","#55FF55"), "yello":("黄牌","#FFFF00"), "blue":("蓝牌","#6666FF")}
      
   def __init__(self, win):
      ttk.Frame.__init__(self, win)
      frame_left = ttk.Frame(self)
      frame_right1 = ttk.Frame(self)
      frame_right2 = ttk.Frame(self)
      win.title("车牌识别")
      win.state("zoomed")
      self.pack(fill=tk.BOTH, expand=tk.YES, padx="5", pady="5")
      frame_left.pack(side=LEFT,expand=1,fill=BOTH)
      frame_right1.pack(side=TOP,expand=1,fill=tk.Y)
      frame_right2.pack(side=RIGHT,expand=0)
      ttk.Label(frame_left, text='原图:').pack(anchor="nw") 
      ttk.Label(frame_right1, text='车牌位置:').grid(column=0, row=0, sticky=tk.W)
      
      from_pic_ctl = ttk.Button(frame_right2, text="来自图片", width=20, command=self.from_pic)
      from_vedio_ctl = ttk.Button(frame_right2, text="来自摄像头", width=20, command=self.from_vedio)
      self.image_ctl = ttk.Label(frame_left)
      self.image_ctl.pack(anchor="nw")
      
      self.roi_ctl = ttk.Label(frame_right1)
      self.roi_ctl.grid(column=0, row=1, sticky=tk.W)
      ttk.Label(frame_right1, text='识别结果:').grid(column=0, row=2, sticky=tk.W)
      self.r_ctl = ttk.Label(frame_right1, text="")
      self.r_ctl.grid(column=0, row=3, sticky=tk.W)
      self.color_ctl = ttk.Label(frame_right1, text="", width="20")
      self.color_ctl.grid(column=0, row=4, sticky=tk.W)
      from_vedio_ctl.pack(anchor="se", pady="5")
      from_pic_ctl.pack(anchor="se", pady="5")
      self.predictor = predict.CardPredictor()
      self.predictor.train_svm()
      
   def get_imgtk(self, img_bgr):
      img = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
      im = Image.fromarray(img)
      imgtk = ImageTk.PhotoImage(image=im)
      wide = imgtk.width()
      high = imgtk.height()
      if wide > self.viewwide or high > self.viewhigh:
         wide_factor = self.viewwide / wide
         high_factor = self.viewhigh / high
         factor = min(wide_factor, high_factor)
         wide = int(wide * factor)
         if wide <= 0 : wide = 1
         high = int(high * factor)
         if high <= 0 : high = 1
         im=im.resize((wide, high), Image.ANTIALIAS)
         imgtk = ImageTk.PhotoImage(image=im)
      return imgtk
   
   def show_roi(self, r, roi, color):
      if r :
         roi = cv2.cvtColor(roi, cv2.COLOR_BGR2RGB)
         roi = Image.fromarray(roi)
         self.imgtk_roi = ImageTk.PhotoImage(image=roi)
         self.roi_ctl.configure(image=self.imgtk_roi, state='enable')
         self.r_ctl.configure(text=str(r))
         self.update_time = time.time()
         try:
            c = self.color_transform[color]
            self.color_ctl.configure(text=c[0], background=c[1], state='enable')
         except: 
            self.color_ctl.configure(state='disabled')
      elif self.update_time + 8 < time.time():
         self.roi_ctl.configure(state='disabled')
         self.r_ctl.configure(text="")
         self.color_ctl.configure(state='disabled')
      
   def from_vedio(self):
      if self.thread_run:
         return
      if self.camera is None:
         self.camera = cv2.VideoCapture(0)
         if not self.camera.isOpened():
            mBox.showwarning('警告', '摄像头打开失败!')
            self.camera = None
            return
      self.thread = threading.Thread(target=self.vedio_thread, args=(self,))
      self.thread.setDaemon(True)
      self.thread.start()
      self.thread_run = True
      
   def from_pic(self):
      self.thread_run = False
      self.pic_path = askopenfilename(title="选择识别图片", filetypes=[("jpg图片", "*.jpg")])
      if self.pic_path:
         img_bgr = predict.imreadex(self.pic_path)
         self.imgtk = self.get_imgtk(img_bgr)
         self.image_ctl.configure(image=self.imgtk)
         r, roi, color = self.predictor.predict(img_bgr)
         self.show_roi(r, roi, color)

   @staticmethod
   def vedio_thread(self):
      self.thread_run = True
      predict_time = time.time()
      while self.thread_run:
         _, img_bgr = self.camera.read()
         self.imgtk = self.get_imgtk(img_bgr)
         self.image_ctl.configure(image=self.imgtk)
         if time.time() - predict_time > 2:
            r, roi, color = self.predictor.predict(img_bgr)
            self.show_roi(r, roi, color)
            predict_time = time.time()
      print("run end")
      
      
def close_window():
   print("destroy")
   if surface.thread_run :
      surface.thread_run = False
      surface.thread.join(2.0)
   win.destroy()
   
   
if __name__ == '__main__':
   win=tk.Tk()
   
   surface = Surface(win)
   win.protocol('WM_DELETE_WINDOW', close_window)
   win.mainloop()
   

算法文件predict.py

import cv2
import numpy as np
from numpy.linalg import norm
import sys
import os
import json

SZ = 20          #训练图片长宽
MAX_WIDTH = 1000 #原始图片最大宽度
Min_Area = 2000  #车牌区域允许最大面积
PROVINCE_START = 1000
#读取图片文件
def imreadex(filename):
   return cv2.imdecode(np.fromfile(filename, dtype=np.uint8), cv2.IMREAD_COLOR)
   
def point_limit(point):
   if point[0] < 0:
      point[0] = 0
   if point[1] < 0:
      point[1] = 0

#根据设定的阈值和图片直方图,找出波峰,用于分隔字符
def find_waves(threshold, histogram):
   up_point = -1#上升点
   is_peak = False
   if histogram[0] > threshold:
      up_point = 0
      is_peak = True
   wave_peaks = []
   for i,x in enumerate(histogram):
      if is_peak and x < threshold:
         if i - up_point > 2:
            is_peak = False
            wave_peaks.append((up_point, i))
      elif not is_peak and x >= threshold:
         is_peak = True
         up_point = i
   if is_peak and up_point != -1 and i - up_point > 4:
      wave_peaks.append((up_point, i))
   return wave_peaks

#根据找出的波峰,分隔图片,从而得到逐个字符图片
def seperate_card(img, waves):
   part_cards = []
   for wave in waves:
      part_cards.append(img[:, wave[0]:wave[1]])
   return part_cards

#来自opencv的sample,用于svm训练
def deskew(img):
   m = cv2.moments(img)
   if abs(m['mu02']) < 1e-2:
      return img.copy()
   skew = m['mu11']/m['mu02']
   M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
   img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
   return img
#来自opencv的sample,用于svm训练
def preprocess_hog(digits):
   samples = []
   for img in digits:
      gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
      gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
      mag, ang = cv2.cartToPolar(gx, gy)
      bin_n = 16
      bin = np.int32(bin_n*ang/(2*np.pi))
      bin_cells = bin[:10,:10], bin[10:,:10], bin[:10,10:], bin[10:,10:]
      mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
      hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
      hist = np.hstack(hists)
      
      # transform to Hellinger kernel
      eps = 1e-7
      hist /= hist.sum() + eps
      hist = np.sqrt(hist)
      hist /= norm(hist) + eps
      
      samples.append(hist)
   return np.float32(samples)
#不能保证包括所有省份
provinces = [
"zh_cuan", "川",
"zh_e", "鄂",
"zh_gan", "赣",
"zh_gan1", "甘",
"zh_gui", "贵",
"zh_gui1", "桂",
"zh_hei", "黑",
"zh_hu", "沪",
"zh_ji", "冀",
"zh_jin", "津",
"zh_jing", "京",
"zh_jl", "吉",
"zh_liao", "辽",
"zh_lu", "鲁",
"zh_meng", "蒙",
"zh_min", "闽",
"zh_ning", "宁",
"zh_qing", "靑",
"zh_qiong", "琼",
"zh_shan", "陕",
"zh_su", "苏",
"zh_sx", "晋",
"zh_wan", "皖",
"zh_xiang", "湘",
"zh_xin", "新",
"zh_yu", "豫",
"zh_yu1", "渝",
"zh_yue", "粤",
"zh_yun", "云",
"zh_zang", "藏",
"zh_zhe", "浙"
]
class StatModel(object):
   def load(self, fn):
      self.model = self.model.load(fn)  
   def save(self, fn):
      self.model.save(fn)
class SVM(StatModel):
   def __init__(self, C = 1, gamma = 0.5):
      self.model = cv2.ml.SVM_create()
      self.model.setGamma(gamma)
      self.model.setC(C)
      self.model.setKernel(cv2.ml.SVM_RBF)
      self.model.setType(cv2.ml.SVM_C_SVC)
#训练svm
   def train(self, samples, responses):
      self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)
#字符识别
   def predict(self, samples):
      r = self.model.predict(samples)
      return r[1].ravel()

class CardPredictor:
   def __init__(self):
      #车牌识别的部分参数保存在js中,便于根据图片分辨率做调整
      f = open('config.js')
      j = json.load(f)
      for c in j["config"]:
         if c["open"]:
            self.cfg = c.copy()
            break
      else:
         raise RuntimeError('没有设置有效配置参数')

   def __del__(self):
      self.save_traindata()
   def train_svm(self):
      #识别英文字母和数字
      self.model = SVM(C=1, gamma=0.5)
      #识别中文
      self.modelchinese = SVM(C=1, gamma=0.5)
      if os.path.exists("svm.dat"):
         self.model.load("svm.dat")
      else:
         chars_train = []
         chars_label = []
         
         for root, dirs, files in os.walk("train\\chars2"):
            if len(os.path.basename(root)) > 1:
               continue
            root_int = ord(os.path.basename(root))
            for filename in files:
               filepath = os.path.join(root,filename)
               digit_img = cv2.imread(filepath)
               digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY)
               chars_train.append(digit_img)
               #chars_label.append(1)
               chars_label.append(root_int)
         
         chars_train = list(map(deskew, chars_train))
         chars_train = preprocess_hog(chars_train)
         #chars_train = chars_train.reshape(-1, 20, 20).astype(np.float32)
         chars_label = np.array(chars_label)
         print(chars_train.shape)
         self.model.train(chars_train, chars_label)
      if os.path.exists("svmchinese.dat"):
         self.modelchinese.load("svmchinese.dat")
      else:
         chars_train = []
         chars_label = []
         for root, dirs, files in os.walk("train\\charsChinese"):
            if not os.path.basename(root).startswith("zh_"):
               continue
            pinyin = os.path.basename(root)
            index = provinces.index(pinyin) + PROVINCE_START + 1 #1是拼音对应的汉字
            for filename in files:
               filepath = os.path.join(root,filename)
               digit_img = cv2.imread(filepath)
               digit_img = cv2.cvtColor(digit_img, cv2.COLOR_BGR2GRAY)
               chars_train.append(digit_img)
               #chars_label.append(1)
               chars_label.append(index)
         chars_train = list(map(deskew, chars_train))
         chars_train = preprocess_hog(chars_train)
         #chars_train = chars_train.reshape(-1, 20, 20).astype(np.float32)
         chars_label = np.array(chars_label)
         print(chars_train.shape)
         self.modelchinese.train(chars_train, chars_label)

   def save_traindata(self):
      if not os.path.exists("svm.dat"):
         self.model.save("svm.dat")
      if not os.path.exists("svmchinese.dat"):
         self.modelchinese.save("svmchinese.dat")

   def accurate_place(self, card_img_hsv, limit1, limit2, color):
      row_num, col_num = card_img_hsv.shape[:2]
      xl = col_num
      xr = 0
      yh = 0
      yl = row_num
      #col_num_limit = self.cfg["col_num_limit"]
      row_num_limit = self.cfg["row_num_limit"]
      col_num_limit = col_num * 0.8 if color != "green" else col_num * 0.5#绿色有渐变
      for i in range(row_num):
         count = 0
         for j in range(col_num):
            H = card_img_hsv.item(i, j, 0)
            S = card_img_hsv.item(i, j, 1)
            V = card_img_hsv.item(i, j, 2)
            if limit1 < H <= limit2 and 34 < S and 46 < V:
               count += 1
         if count > col_num_limit:
            if yl > i:
               yl = i
            if yh < i:
               yh = i
      for j in range(col_num):
         count = 0
         for i in range(row_num):
            H = card_img_hsv.item(i, j, 0)
            S = card_img_hsv.item(i, j, 1)
            V = card_img_hsv.item(i, j, 2)
            if limit1 < H <= limit2 and 34 < S and 46 < V:
               count += 1
         if count > row_num - row_num_limit:
            if xl > j:
               xl = j
            if xr < j:
               xr = j
      return xl, xr, yh, yl
      
   def predict(self, car_pic):
      if type(car_pic) == type(""):
         img = imreadex(car_pic)
      else:
         img = car_pic
      pic_hight, pic_width = img.shape[:2]

      if pic_width > MAX_WIDTH:
         resize_rate = MAX_WIDTH / pic_width
         img = cv2.resize(img, (MAX_WIDTH, int(pic_hight*resize_rate)), interpolation=cv2.INTER_AREA)
      
      blur = self.cfg["blur"]
      #高斯去噪
      if blur > 0:
         img = cv2.GaussianBlur(img, (blur, blur), 0)#图片分辨率调整
      oldimg = img
      img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
      #equ = cv2.equalizeHist(img)
      #img = np.hstack((img, equ))
      #去掉图像中不会是车牌的区域
      kernel = np.ones((20, 20), np.uint8)
      img_opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
      img_opening = cv2.addWeighted(img, 1, img_opening, -1, 0);

      #找到图像边缘
      ret, img_thresh = cv2.threshold(img_opening, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
      img_edge = cv2.Canny(img_thresh, 100, 200)
      #使用开运算和闭运算让图像边缘成为一个整体
      kernel = np.ones((self.cfg["morphologyr"], self.cfg["morphologyc"]), np.uint8)
      img_edge1 = cv2.morphologyEx(img_edge, cv2.MORPH_CLOSE, kernel)
      img_edge2 = cv2.morphologyEx(img_edge1, cv2.MORPH_OPEN, kernel)

      #查找图像边缘整体形成的矩形区域,可能有很多,车牌就在其中一个矩形区域中
      try:
         contours, hierarchy = cv2.findContours(img_edge2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
      except ValueError:
         image, contours, hierarchy = cv2.findContours(img_edge2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
      contours = [cnt for cnt in contours if cv2.contourArea(cnt) > Min_Area]
      print('len(contours)', len(contours))
      #一一排除不是车牌的矩形区域
      car_contours = []
      for cnt in contours:
         rect = cv2.minAreaRect(cnt)
         area_width, area_height = rect[1]
         if area_width < area_height:
            area_width, area_height = area_height, area_width
         wh_ratio = area_width / area_height
         #print(wh_ratio)
         #要求矩形区域长宽比在2到5.5之间,2到5.5是车牌的长宽比,其余的矩形排除
         if wh_ratio > 2 and wh_ratio < 5.5:
            car_contours.append(rect)
            box = cv2.boxPoints(rect)
            box = np.int0(box)
            #oldimg = cv2.drawContours(oldimg, [box], 0, (0, 0, 255), 2)
            #cv2.imshow("edge4", oldimg)
            #print(rect)

      print(len(car_contours))

      print("精确定位")
      card_imgs = []
      #矩形区域可能是倾斜的矩形,需要矫正,以便使用颜色定位
      for rect in car_contours:
         if rect[2] > -1 and rect[2] < 1:#创造角度,使得左、高、右、低拿到正确的值
            angle = 1
         else:
            angle = rect[2]
         rect = (rect[0], (rect[1][0]+5, rect[1][1]+5), angle)#扩大范围,避免车牌边缘被排除

         box = cv2.boxPoints(rect)
         heigth_point = right_point = [0, 0]
         left_point = low_point = [pic_width, pic_hight]
         for point in box:
            if left_point[0] > point[0]:
               left_point = point
            if low_point[1] > point[1]:
               low_point = point
            if heigth_point[1] < point[1]:
               heigth_point = point
            if right_point[0] < point[0]:
               right_point = point

         if left_point[1] <= right_point[1]:#正角度
            new_right_point = [right_point[0], heigth_point[1]]
            pts2 = np.float32([left_point, heigth_point, new_right_point])#字符只是高度需要改变
            pts1 = np.float32([left_point, heigth_point, right_point])
            M = cv2.getAffineTransform(pts1, pts2)
            dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight))
            point_limit(new_right_point)
            point_limit(heigth_point)
            point_limit(left_point)
            card_img = dst[int(left_point[1]):int(heigth_point[1]), int(left_point[0]):int(new_right_point[0])]
            card_imgs.append(card_img)
            #cv2.imshow("card", card_img)
            #cv2.waitKey(0)
         elif left_point[1] > right_point[1]:#负角度
            
            new_left_point = [left_point[0], heigth_point[1]]
            pts2 = np.float32([new_left_point, heigth_point, right_point])#字符只是高度需要改变
            pts1 = np.float32([left_point, heigth_point, right_point])
            M = cv2.getAffineTransform(pts1, pts2)
            dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight))
            point_limit(right_point)
            point_limit(heigth_point)
            point_limit(new_left_point)
            card_img = dst[int(right_point[1]):int(heigth_point[1]), int(new_left_point[0]):int(right_point[0])]
            card_imgs.append(card_img)
            #cv2.imshow("card", card_img)
            #cv2.waitKey(0)
      #开始使用颜色定位,排除不是车牌的矩形,目前只识别蓝、绿、黄车牌
      colors = []
      for card_index,card_img in enumerate(card_imgs):
         green = yello = blue = black = white = 0
         card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV)
         #有转换失败的可能,原因来自于上面矫正矩形出错
         if card_img_hsv is None:
            continue
         row_num, col_num= card_img_hsv.shape[:2]
         card_img_count = row_num * col_num

         for i in range(row_num):
            for j in range(col_num):
               H = card_img_hsv.item(i, j, 0)
               S = card_img_hsv.item(i, j, 1)
               V = card_img_hsv.item(i, j, 2)
               if 11 < H <= 34 and S > 34:#图片分辨率调整
                  yello += 1
               elif 35 < H <= 99 and S > 34:#图片分辨率调整
                  green += 1
               elif 99 < H <= 124 and S > 34:#图片分辨率调整
                  blue += 1
               
               if 0 < H <180 and 0 < S < 255 and 0 < V < 46:
                  black += 1
               elif 0 < H <180 and 0 < S < 43 and 221 < V < 225:
                  white += 1
         color = "no"

         limit1 = limit2 = 0
         if yello*2 >= card_img_count:
            color = "yello"
            limit1 = 11
            limit2 = 34#有的图片有色偏偏绿
         elif green*2 >= card_img_count:
            color = "green"
            limit1 = 35
            limit2 = 99
         elif blue*2 >= card_img_count:
            color = "blue"
            limit1 = 100
            limit2 = 124#有的图片有色偏偏紫
         elif black + white >= card_img_count*0.7:#TODO
            color = "bw"
         print(color)
         colors.append(color)
         print(blue, green, yello, black, white, card_img_count)
         #cv2.imshow("color", card_img)
         #cv2.waitKey(0)
         if limit1 == 0:
            continue
         #以上为确定车牌颜色
         #以下为根据车牌颜色再定位,缩小边缘非车牌边界
         xl, xr, yh, yl = self.accurate_place(card_img_hsv, limit1, limit2, color)
         if yl == yh and xl == xr:
            continue
         need_accurate = False
         if yl >= yh:
            yl = 0
            yh = row_num
            need_accurate = True
         if xl >= xr:
            xl = 0
            xr = col_num
            need_accurate = True
         card_imgs[card_index] = card_img[yl:yh, xl:xr] if color != "green" or yl < (yh-yl)//4 else card_img[yl-(yh-yl)//4:yh, xl:xr]
         if need_accurate:#可能x或y方向未缩小,需要再试一次
            card_img = card_imgs[card_index]
            card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV)
            xl, xr, yh, yl = self.accurate_place(card_img_hsv, limit1, limit2, color)
            if yl == yh and xl == xr:
               continue
            if yl >= yh:
               yl = 0
               yh = row_num
            if xl >= xr:
               xl = 0
               xr = col_num
         card_imgs[card_index] = card_img[yl:yh, xl:xr] if color != "green" or yl < (yh-yl)//4 else card_img[yl-(yh-yl)//4:yh, xl:xr]
      #以上为车牌定位
      #以下为识别车牌中的字符
      predict_result = []
      roi = None
      card_color = None
      for i, color in enumerate(colors):
         if color in ("blue", "yello", "green"):
            card_img = card_imgs[i]
            gray_img = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY)
            #黄、绿车牌字符比背景暗、与蓝车牌刚好相反,所以黄、绿车牌需要反向
            if color == "green" or color == "yello":
               gray_img = cv2.bitwise_not(gray_img)
            ret, gray_img = cv2.threshold(gray_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
            #查找水平直方图波峰
            x_histogram  = np.sum(gray_img, axis=1)
            x_min = np.min(x_histogram)
            x_average = np.sum(x_histogram)/x_histogram.shape[0]
            x_threshold = (x_min + x_average)/2
            wave_peaks = find_waves(x_threshold, x_histogram)
            if len(wave_peaks) == 0:
               print("peak less 0:")
               continue
            #认为水平方向,最大的波峰为车牌区域
            wave = max(wave_peaks, key=lambda x:x[1]-x[0])
            gray_img = gray_img[wave[0]:wave[1]]
            #查找垂直直方图波峰
            row_num, col_num= gray_img.shape[:2]
            #去掉车牌上下边缘1个像素,避免白边影响阈值判断
            gray_img = gray_img[1:row_num-1]
            y_histogram = np.sum(gray_img, axis=0)
            y_min = np.min(y_histogram)
            y_average = np.sum(y_histogram)/y_histogram.shape[0]
            y_threshold = (y_min + y_average)/5#U和0要求阈值偏小,否则U和0会被分成两半

            wave_peaks = find_waves(y_threshold, y_histogram)

            #for wave in wave_peaks:
            #  cv2.line(card_img, pt1=(wave[0], 5), pt2=(wave[1], 5), color=(0, 0, 255), thickness=2) 
            #车牌字符数应大于6
            if len(wave_peaks) <= 6:
               print("peak less 1:", len(wave_peaks))
               continue
            
            wave = max(wave_peaks, key=lambda x:x[1]-x[0])
            max_wave_dis = wave[1] - wave[0]
            #判断是否是左侧车牌边缘
            if wave_peaks[0][1] - wave_peaks[0][0] < max_wave_dis/3 and wave_peaks[0][0] == 0:
               wave_peaks.pop(0)
            
            #组合分离汉字
            cur_dis = 0
            for i,wave in enumerate(wave_peaks):
               if wave[1] - wave[0] + cur_dis > max_wave_dis * 0.6:
                  break
               else:
                  cur_dis += wave[1] - wave[0]
            if i > 0:
               wave = (wave_peaks[0][0], wave_peaks[i][1])
               wave_peaks = wave_peaks[i+1:]
               wave_peaks.insert(0, wave)
            
            #去除车牌上的分隔点
            point = wave_peaks[2]
            if point[1] - point[0] < max_wave_dis/3:
               point_img = gray_img[:,point[0]:point[1]]
               if np.mean(point_img) < 255/5:
                  wave_peaks.pop(2)
            
            if len(wave_peaks) <= 6:
               print("peak less 2:", len(wave_peaks))
               continue
            part_cards = seperate_card(gray_img, wave_peaks)
            for i, part_card in enumerate(part_cards):
               #可能是固定车牌的铆钉
               if np.mean(part_card) < 255/5:
                  print("a point")
                  continue
               part_card_old = part_card
               w = abs(part_card.shape[1] - SZ)//2
               
               part_card = cv2.copyMakeBorder(part_card, 0, 0, w, w, cv2.BORDER_CONSTANT, value = [0,0,0])
               part_card = cv2.resize(part_card, (SZ, SZ), interpolation=cv2.INTER_AREA)
               
               #part_card = deskew(part_card)
               part_card = preprocess_hog([part_card])
               if i == 0:
                  resp = self.modelchinese.predict(part_card)
                  charactor = provinces[int(resp[0]) - PROVINCE_START]
               else:
                  resp = self.model.predict(part_card)
                  charactor = chr(resp[0])
               #判断最后一个数是否是车牌边缘,假设车牌边缘被认为是1
               if charactor == "1" and i == len(part_cards)-1:
                  if part_card_old.shape[0]/part_card_old.shape[1] >= 7:#1太细,认为是边缘
                     continue
               predict_result.append(charactor)
            roi = card_img
            card_color = color
            break
            
      return predict_result, roi, card_color#识别到的字符、定位的车牌图像、车牌颜色

if __name__ == '__main__':
   c = CardPredictor()
   c.train_svm()
   r, roi, color = c.predict("黑A16341.jpg")
   print(r)

还有两个svm.dat  svmchinese.dat 还有个js文件

运行效果如下:

 

 

展开阅读全文

没有更多推荐了,返回首页