一、音频频谱分析中的 dB 计算
在音频处理中,通常使用 FFT 幅度谱 直接转换为 dB,无需显式定义参考值 ArefAref,而是采用 归一化处理 或 相对 dB 表示:
公式(常用形式)
归一化 dB(0 dB 为最大值)
如果希望将最大值设为 0 dB(常用于频谱可视化):
二、C++实现
#include <iostream>
#include <cmath>
#include <vector>
#include <fftw3.h>
// 计算幅度谱并转换为 dB
std::vector<double> computeMagnitudeDB(const fftw_complex* fftOutput, size_t n) {
std::vector<double> magnitudeDB(n / 2 + 1); // 只取前 N/2+1 个点(实数信号的对称性)
for (size_t i = 0; i <= n / 2; ++i) {
double real = fftOutput[i][0];
double imag = fftOutput[i][1];
double magnitude = sqrt(real * real + imag * imag);
// 避免 log10(0) 的情况,加一个极小值(如 1e-10)
magnitudeDB[i] = 20 * log10(magnitude + 1e-10);
}
return magnitudeDB;
}
int main() {
// 示例:假设我们有一段音频数据(这里用正弦波模拟)
const size_t N = 1024; // FFT 点数
std::vector<double> audioSignal(N);
// 生成测试信号(440Hz 正弦波)
double sampleRate = 44100.0;
double freq = 440.0;
for (size_t i = 0; i < N; ++i) {
audioSignal[i] = sin(2 * M_PI * freq * i / sampleRate);
}
// FFTW 输入输出数组
fftw_complex* fftOutput = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * N);
double* fftInput = (double*)fftw_malloc(sizeof(double) * N);
// 复制输入数据
for (size_t i = 0; i < N; ++i) {
fftInput[i] = audioSignal[i];
}
// 创建 FFT 计划
fftw_plan plan = fftw_plan_dft_r2c_1d(N, fftInput, fftOutput, FFTW_ESTIMATE);
// 执行 FFT
fftw_execute(plan);
// 计算幅度谱(dB)
std::vector<double> magnitudeDB = computeMagnitudeDB(fftOutput, N);
// 打印前 10 个频点的 dB 值
for (size_t i = 0; i < 10; ++i) {
std::cout << "Frequency Bin " << i << ": " << magnitudeDB[i] << " dB" << std::endl;
}
// 释放 FFTW 资源
fftw_destroy_plan(plan);
fftw_free(fftInput);
fftw_free(fftOutput);
return 0;
}
关键步骤说明
-
FFT 计算:
-
fftw_plan_dft_r2c_1d
用于实数信号 → 复数频谱的变换。 -
fftw_execute(plan)
执行 FFT 计算。
-
-
幅度谱计算:
-
复数频谱
fftOutput[i][0]
是实部,fftOutput[i][1]
是虚部。 -
幅度 =
sqrt(real² + imag²)
-
-
转换为 dB:
-
dB = 20 * log10(magnitude)
(为避免log10(0)
,加一个极小值1e-10
)
-
-
对称性处理:
-
实数信号的 FFT 是对称的,只需取前
N/2 + 1
个点。
-