题目描述
小苞准备开着车沿着公路自驾。
公路上一共有 𝑛n 个站点,编号为从 11 到 𝑛n。其中站点 𝑖i 与站点 𝑖+1i+1 的距离为 𝑣𝑖vi 公里。
公路上每个站点都可以加油,编号为 𝑖i 的站点一升油的价格为 𝑎𝑖ai 元,且每个站点只出售整数升的油。
小苞想从站点 11 开车到站点 𝑛n,一开始小苞在站点 11 且车的油箱是空的。已知车的油箱足够大,可以装下任意多的油,且每升油可以让车前进 𝑑d 公里。问小苞从站点 11 开到站点 𝑛n,至少要花多少钱加油?
输入格式
输入的第一行包含两个正整数 𝑛n 和 𝑑d,分别表示公路上站点的数量和车每升油可以前进的距离。
输入的第二行包含 𝑛−1n−1 个正整数 𝑣1,𝑣2…𝑣𝑛−1v1,v2…vn−1,分别表示站点间的距离。
输入的第三行包含 𝑛n 个正整数 𝑎1,𝑎2…𝑎𝑛a1,a2…an,分别表示在不同站点加油的价格。
输出格式
输出一行,仅包含一个正整数,表示从站点 11 开到站点 𝑛n,小苞至少要花多少钱加油。
样例 #1
样例输入 #1
5 4
10 10 10 10
9 8 9 6 5
Copy
样例输出 #1
79
Copy
提示
【样例 1 解释】
最优方案下:小苞在站点 11 买了 33 升油,在站点 22 购买了 55 升油,在站点 44 购买了 22 升油。
【样例 2】
见选手目录下的 road/road2.in 与 road/road2.ans。
【数据范围】
对于所有测试数据保证:1≤𝑛≤1051≤n≤105,1≤𝑑≤1051≤d≤105,1≤𝑣𝑖≤1051≤vi≤105,1≤𝑎𝑖≤1051≤ai≤105。
测试点 | 𝑛≤n≤ | 特殊性质 |
---|---|---|
1∼51∼5 | 88 | 无 |
6∼106∼10 | 103103 | |
11∼1311∼13 | 105105 | A |
14∼1614∼16 | B | |
17∼2017∼20 | 无 |
- 特殊性质 A:站点 11 的油价最低。
- 特殊性质 B:对于所有 1≤𝑖<𝑛1≤i<n,𝑣𝑖vi 为 𝑑d 的倍数。
思路
直接模拟!!!!!!
#include<bits/stdc++.h>
using namespace std;
long long n,d,dw,d3,ii;
struct ll{
long long v,a;
}c[1000001];
int main(){
cin>>n>>d;
for(int i=2;i<=n;i++){
cin>>c[i].v;
}
for(int i=1;i<=n;i++){
cin>>c[i].a;
}
dw=c[1].a;
for(int i=2;i<=n;i++){
if((c[i].v-ii)%d==0){
d3+=(((c[i].v-ii)/d)*dw);
ii=0;
}
else{
d3+=(((c[i].v-ii)/d+1)*dw);
ii=d-(c[i].v-ii)%d;
}
dw=min(dw,c[i].a);
}
cout<<d3;
return 0;
}