[CSP-J 2023] 一元二次方程【民间数据】
题目背景
众所周知,对一元二次方程 𝑎𝑥2+𝑏𝑥+𝑐=0,(𝑎≠0)ax2+bx+c=0,(a=0),可以用以下方式求实数解:
- 计算 Δ=𝑏2−4𝑎𝑐Δ=b2−4ac,则:
- 若 Δ<0Δ<0,则该一元二次方程无实数解。
- 否则 Δ≥0Δ≥0,此时该一元二次方程有两个实数解 𝑥1,2=−𝑏±Δ2𝑎x1,2=2a−b±Δ。
例如:
- 𝑥2+𝑥+1=0x2+x+1=0 无实数解,因为 Δ=12−4×1×1=−3<0Δ=12−4×1×1=−3<0。
- 𝑥2−2𝑥+1=0x2−2x+1=0 有两相等实数解 𝑥1,2=1x1,2=1。
- 𝑥2−3𝑥+2=0x2−3x+2=0 有两互异实数解 𝑥1=1,𝑥2=2x1=1,x2=2。
在题面描述中 𝑎a 和 𝑏b 的最大公因数使用 gcd(𝑎,𝑏)gcd(a,b) 表示。例如 1212 和 1818 的最大公因数是 66,即 gcd(12,18)=6gcd(12,18)=6。
题目描述
现在给定一个一元二次方程的系数 𝑎,𝑏,𝑐a,b,c,其中 𝑎,𝑏,𝑐a,b,c 均为整数且 𝑎≠0a=0。你需要判断一元二次方程 𝑎𝑥2+𝑏𝑥+𝑐=0ax2+bx+c=0 是否有实数解,并按要求的格式输出。
在本题中输出有理数 𝑣v 时须遵循以下规则:
-
由有理数的定义,存在唯一的两个整数 𝑝p 和 𝑞q,满足 𝑞>0q>0,gcd(𝑝,𝑞)=1gcd(p,q)=1 且 𝑣=𝑝𝑞v=qp。
-
若 𝑞=1q=1,则输出
{p}
,否则输出{p}/{q}
,其中{n}
代表整数 𝑛n 的值; -
例如:
- 当 𝑣=−0.5v=−0.5 时,𝑝p 和 𝑞q 的值分别为 −1−1 和