Time Limit: 2 sec / Memory Limit: 1024 MiB
Score : 400 points
Problem Statement
You are given a string S of length N consisting of 0
and 1
.
You can perform the following operation on S any number of times (possibly zero):
- Delete the first or last character, flip it (change
0
to1
or1
to0
), and insert it back at any position. More formally, let r(0
)=1
and r(1
)=0
, and perform one of the following: (Here, Si denotes the i-th character of S.)- Choose any i (1≤i≤N) and change S to S2…Sir(S1)Si+1…SN.
- Choose any i (0≤i≤N−1) and change S to S1…Sir(SN)Si+1…SN−1.
Find the minimum number of operations required to make all characters of S the same. It can be proved that such a sequence of operations always exists.
You are given T test cases, so solve each of them.
有道 翻译
问题陈述
你得到一个长度为 N 的字符串 S ,由‘ 0 ’和‘ 1 ’组成。
您可以对 S 执行以下操作任意次数(可能为零):
-删除第一个或最后一个字符,翻转它(将‘ 0 ’更改为‘ 1 ’或‘ 1 ’更改为‘ 0 ’),然后将其插入到任何位置。更正式地说,让 r( ' 0 ' )= ‘ 1 ’和 r( ' 1 ' )= ' 0 ',并执行以下操作之一:(这里, Si 表示 S 的 i \第一个字符。)
—选择任意 i (1≤i≤N) ,将 S 修改为 S2…Sir(S1)Si+1…SN 。
—选择任意 i (0≤i≤N−1) ,将 S 修改为 S1…Sir(SN)Si+1…SN−1 。
找出使 S 的所有字符相同所需的最小操作数。可以证明这样一个操作序列总是存在的。
给您 T 个测试用例,所以解决它们中的每一个。
Constraints
- 1≤T≤2×105
- 2≤N≤5×105
- T and N are integers.
- S is a string of length N consisting of
0
and1
. - The sum of N over all test cases is at most 5×105.
有道 翻译
# #约束
—— 1≤T≤2×105
—— 2≤N≤5×105
— T 和 N 为整数。
— S 是长度为 N 的字符串,由‘ 0 ’和‘ 1 ’组成。
—所有测试用例 N 的总和不超过 5×105 。
Input
The input is given from Standard Input in the following format:
T case1 case2 ⋮ caseT
casei represents the i-th test case. Each test case is given in the following format:
N S
有道 翻译
# #输入
输入来自标准输入,格式如下:
T
case1
case2
⋮
caseT
casei 表示 i \第一个测试用例。每个测试用例以以下格式给出:
N
S
Output
Output T lines. The i-th line (1≤i≤T) should contain the answer for the i-th test case.
有道 翻译
# #输出
输出 T 行。 i \第一行 (1≤i≤T) 应该包含 i \第一个测试用例的答案。
Sample Input 1
Copy
3 5 01001 3 000 15 110010111100101
Sample Output 1
Copy
4 0 16
For the first test case, for example, you can make all characters of S into 0
with four operations as follows. It is impossible to make all characters of S the same with three or fewer operations, so the answer is 4.
- Delete the first character
0
, and insert1
between the 1st and 2nd characters (in S after deletion). S becomes11001
. - Delete the first character
1
, and insert0
between the 2nd and 3rd characters (in S after deletion). S becomes10001
. - Delete the last character
1
, and insert0
at the end (in S after deletion). S becomes10000
. - Delete the first character
1
, and insert0
at the beginning (in S after deletion). S becomes00000
.
For the second test case, all characters of S are the same from the beginning, so no operation is needed.
有道 翻译
###输出示例
4
0
16
例如,对于第一个测试用例,您可以通过以下四种操作将 S 的所有字符都变成‘ 0 ’。不可能通过三次或更少的操作使 S 的所有字符都相同,因此答案是 4 。
—删除第一个字符“0”,并在第一个和第二个字符之间插入“1”(删除后在 S 中)。 S 变成了‘ 11001 ’。
—删除第一个字符“1”,并在第二和第三个字符之间插入“0”(删除后在 S 中)。 S 变成了‘ 10001 ’。
—删除最后一个字符“1”,并在末尾插入“0”(删除后在 S 中)。 S 变成了‘ 10000 ’。
—删除第一个字符“1”,并在开头插入“0”(删除后在 S 中)。 S 变成‘ 00000 ’。
对于第二个测试用例, S 的所有字符从一开始就是相同的,因此不需要任何操作。
思路
分别计算全1全0取min即可。
代码见下
#include<bits/stdc++.h>
using namespace std;
long long t,n,a1,b1,a2,b2,lk=0,kl=0;
char s[500005];
int main(){
cin>>t;
while(t--){
cin>>n;
a1=a2=0;
b1=b2=0;
lk=kl=0;
for(int i=1;i<=n;i++){
cin>>s[i];
if(s[i]=='0'){
lk++;
if(i!=1&&s[i]==s[i-1]){
a1++;
}
else{
a2=max(a1,a2);
a1=1;
}
}
if(s[i]=='1'){
kl++;
if(i!=1&&s[i]==s[i-1]){
b1++;
}
else{
b2=max(b1,b2);
b1=1;
}
}
}
a2=max(a1,a2);
b2=max(b1,b2);
cout<<min(lk+(n-lk)*2-b2*2,kl+(n-kl)*2-a2*2)<<endl;
}
return 0;
}