自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Ven%的博客

简单点说不可以?

  • 博客(300)
  • 收藏
  • 关注

原创 idea中的bean自动注入提示错误解决

IDEA 2018版:可做如下配置IDEA 2017版:并没有这些选项,则直接修改代码:@Autowired(required = false)即可

2021-01-28 16:08:53 2498

原创 选中当前行快捷键

在SQL工具上频繁会使用到选择当前行,然后再运行,所以非常需要用到 选中当前行快捷键.当前行行首:Home当前行行尾:End选中当前行:先 按Home(将光标定位到行首,然后按Shift+End(行尾) {从行首连选到行尾}...

2021-01-11 13:24:46 3896 2

原创 IDEA怎么使用鼠标同时编辑多行(超级使用!!!)

领悟到同时编辑多处的诀窍,会让你的编程速度翻上十倍不止,赶超同行!!!(实用篇)接下来给大家介绍两个超级实用的技巧:1.按住Alt 然后按住鼠标左键拖动光标,就可以同时输入了(太爽了吧!!!)![在这里插入图片描述](https://img-blog.csdnimg.cn/20201207100355603.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4

2020-12-07 10:28:01 13322 4

原创 感受Python之禅及其意

在命令符提示窗口中输入 import this 就会显示 Tim Peters 的 The Zen of Python(Python之禅) 我们从中可以感受到Python它散发出的迷人魅力.

2020-11-29 20:25:01 561 3

原创 解决 PyTorch 与 Python 3.12 的兼容性问题:`operator torchvision::nms does not exist` 深度解析

深度学习生态对 Python 新版本的支持通常有 6-12 个月的滞后期。建议在开发关键项目时采用。

2025-06-12 15:38:21 4

原创 自然语言处理简史:从“语法狂魔”到“统计吃货”的逆袭

他们疯狂编写语法规则(比如乔姆斯基的形式语言),结果被自然语言的灵活性暴击——规则越写越多,矛盾越攒越乱,20年努力几乎归零。的肩膀上——从规则主义的失败,到统计派的逆袭,再到神经网络的暴力美学。:Word2Vec把词语变成数学向量(“国王-男人+女人=女王”),但多义词仍是噩梦(“苹果”=水果or公司?• 发明n-gram模型(如“三元组”),用前两个词猜第三个词(马尔可夫假设),简单粗暴但有效。(看“苹果”周围是“香蕉”还是“iPhone”)。:今天的语言模型不是“突然开挂”,而是站在。

2025-06-12 14:54:25 6

原创 Ubantu服务器如何全局设置pip国内代理

摘要 解决国内pip下载速度慢的问题可以通过设置全局代理。使用命令pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple即可将pip默认源设置为清华镜像(也可选择阿里云等其他国内镜像)。设置完成后可通过查看/root/.config/pip/pip.conf文件确认是否生效。常见国内镜像还包括中国科技大学、华中理工、豆瓣等源地址。该方法一劳永逸地解决了每次使用pip都需要手动指定镜像源的问题。

2025-06-12 10:44:25 17

原创 BERT vs BART vs T5:预训练语言模型核心技术详解

自然语言处理(NLP)领域的变革性突破始于2018年BERT的横空出世,随后BART和T5的诞生进一步推动了预训练语言模型的发展。BERT、BART和T5的演进揭示了NLP领域的范式变迁:从任务特定模型到统一架构,从理解生成分离到融合,这一路径仍在继续。位置编码沿用BERT的可学习方案,但通过层次分解技术可扩展至26万长度(后文详述)。Facebook于2019年提出BART,结合了BERT的双向编码器和GPT的自回归解码器,形成。,通过分桶策略(邻近位置精细编码,远距离位置共用编码)突破长度限制。

2025-06-12 09:48:52 5

原创 大语言模型如何处理长文本?常用文本分割技术详解

文本分割是处理长文本任务的关键前置步骤。下游任务需求(如问答系统需要保留上下文)模型限制(token长度、计算成本)文本特性(结构化/非结构化、语言类型)建议先尝试LangChain等成熟工具,再根据业务需求定制分割逻辑。

2025-06-10 11:59:37 90

原创 惊了!现在可以命令AI停止思考?DeepSeek-R1 8B模型+Ollama 0.9.0新玩法

Ollama 0.9.0新增深度思考模式功能,可自主控制模型思考过程。该模式让大模型输出推理过程,在复杂问题上回答更准确;关闭后则提升简单任务的执行效率。操作步骤:1)运行deepseek-r1模型;2)输入"/set nothink"关闭思考;3)输入"/set think"重新开启。该功能为用户提供了灵活选择模型思考深度的控制权。(99字)

2025-06-06 20:35:22 342

原创 什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

X Window System(简称X11)是Linux/Unix系统上核心的图形显示架构X Server:负责图形渲染(运行在用户本地机器)X Client:实际应用程序(可运行在远程服务器)通信协议:X11协议通过网络传输绘图指令和用户输入这种架构使X11天生支持跨网络图形显示——这正是X11 Forwarding的技术基础:通过SSH隧道安全地转发X11通信。创建测试程序# 创建3D坐标轴# 生成10个随机数据点 (x, y, z)# 绘制散点图# 添加坐标轴标签# 添加标题。

2025-06-06 17:40:40 268

原创 python实战:如何对word文档的格式进行定制化排版

本文介绍了使用Python对裁决书等格式文书进行批量排版的方法。通过docx模块创建四种自定义样式:裁决书标题(黑体24磅居中)、章节标题(黑体22磅居中)、小标题(宋体16磅加粗左对齐)和正文样式(宋体16磅首行缩进2字符)。文章提供了完整的代码示例,包括样式设置、段落格式调整以及通过正则表达式识别不同标题层级的方法,可实现裁决书三大板块(案情、仲裁庭意见、裁决)的自动化格式处理。该方法也可推广应用于其他类型文书的批量排版需求。

2025-06-06 17:24:00 74

原创 使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

生成颜色和大小数组。

2025-06-06 14:25:03 290

原创 Linux服务器如何安装wps?

WPS Office Linux版安装指南:访问WPS官网下载Linux版本;使用"sudo dpkg -i wps-office*.deb"命令完成安装;最后在终端输入"wps"命令即可启动软件。

2025-06-05 16:46:39 256

原创 qwen3使用VLLM启动:vllm docker运行命令

摘要:该文档提供了在Docker容器中管理vllm-qwen3-32b大语言模型的操作指南。首先给出了停止容器的命令,随后详细说明了启动容器的配置参数:使用GPU资源、16G共享内存、挂载模型目录、设置8000端口映射,并指定了包括yarn类型的rope-scaling、8万token的最大长度、90%的GPU利用率等模型参数。启动命令通过vllm的OpenAI API服务端接口加载模型,支持同时处理5个请求序列。

2025-06-05 16:13:09 81

原创 deepseek-r1-0528-qwen3-8b本地部署:Ollama老版本大升级至0.9.0

摘要:本文介绍了升级Ollama以支持Qwen3等新模型的方法。首先检查当前版本,确认无法运行新模型后,通过安装ModelScope依赖,下载最新Ollama镜像(v0.9.0),执行安装脚本完成升级。升级过程包括卸载旧版本、安装新版本,最后验证版本号确认升级成功。该方法解决了老版本Ollama无法运行Qwen3系列模型的问题。

2025-06-05 15:35:06 357

原创 python实战:批量对比word文档

摘要:该Python代码实现批量对比两个目录中的Word文档差异。通过win32com调用Word应用程序的CompareDocuments功能,自动匹配同名文件进行对比,并将结果以修订模式保存到指定目录。代码包含错误处理机制,确保文件正确关闭,并过滤临时文件。使用示例展示了如何设置输入输出目录路径。该脚本适用于需要批量比较Word文档差异的场景,如版本控制或文档审核。

2025-06-05 15:18:54 40

原创 DeepSeek-R1-0528-Qwen3-8B为底座微调领域大模型准备:制作领域专用数据集

想要微调领域大模型,数据的准备是必不可少的。然而微调大模型需要的数据极多,这样花费很多人力和准备。有没有方便又高效的方法?一下子就可以准备大量的领域专用数据集呢?

2025-06-05 11:49:47 204

原创 Tokenizer Viewer:新手入门NLP的神器,可视化理解文本处理的秘密

Tokenizer Viewer将枯燥的文本处理转化为探索游戏。当你能亲眼看到同一个词在不同模型中的切分方式特殊字符如何被编码词表大小对分词的影响你已经在理解NLP核心机制的道路上超越了80%的初学者。立即行动运行./start.sh输入你的第一句文本开始探索!在NLP的世界里,眼见为实的理解比死记概念重要百倍。Tokenizer Viewer就是你的第一台显微镜。

2025-06-04 14:49:19 35

原创 如何使用LangChain调用Ollama部署的Qwen3模型?(Ollama版本为0.6.8)

本文介绍了如何使用LangChain连接本地部署的Ollama服务调用Qwen3模型。首先确保Ollama服务已运行并下载了Qwen3模型,然后安装LangChain相关Python包。文中提供了Python代码示例,展示如何初始化本地模型、创建对话链并进行交互式对话。注意事项包括网络端口访问和调整temperature参数控制文本生成。最后建议通过直接测试Ollama API来排查连接问题。该指南适用于需要在本地环境中使用Qwen3模型的开发者。

2025-05-30 11:47:31 96

原创 Python中的enumerate函数:优雅地遍历序列索引与元素

本文详细介绍了Python中enumerate()函数的用法,展示了它如何优雅地同时访问序列元素及其索引。相比传统的range(len())方式,enumerate使代码更简洁可读,支持自定义起始索引,并能高效处理大型序列。文章通过多个实际应用场景(如跳过特定索引、创建字典映射、跟踪处理进度等)演示了其优势,并解析了其迭代器实现原理和性能特点。作为Pythonic编程的典范,enumerate是处理索引-元素对时的最佳选择。

2025-05-29 16:46:38 69

原创 DeepSeek R2来袭?R1最新版性能直逼O3、O4

摘要:DeepSeek-R1-0528模型已在HuggingFace上线并登顶模型榜第一,国内用户可通过镜像网站访问。该模型在LiveCodeBench基准测试中性能媲美OpenAI部分模型,超越谷歌Gemini和Anthropic Claude等竞品。开发者预测DeepSeek R2模型将于6-7月推出。目前模型卡尚未完善,但团队已第一时间发布新版供用户体验。

2025-05-29 16:37:59 585

原创 python实战:在Linux服务器上使用LibreOffice命令行批量接受Word文档的所有修订

通过LibreOffice的命令行接口,我们可以在Linux服务器上高效地自动化处理Word文档的修订。这种方法相比使用WPS Office更加稳定可靠,适合集成到自动化文档处理流程中。本文提供的Python实现封装了完整的处理逻辑和错误处理机制,可以直接集成到现有系统中使用。对于更复杂的文档处理需求,还可以考虑结合LibreOffice的宏功能或使用专门的文档处理库如python-docx进行补充处理。

2025-05-28 14:36:28 78

原创 RAGFlow 源码分析:MinIO 在知识库文件存储中的角色(全网首篇)

RAGFlow使用MinIO作为知识库文件的核心存储系统,通过Docker容器部署并提供9000(API)和9001(管理控制台)两个服务端口。MinIO负责存储用户上传文件、知识库文档及系统内部交换文件,数据持久化保存在容器内/data目录。系统采用多配置文件同步机制管理认证信息(默认用户rag_flow/密码infini_rag_flow),并通过专用网络实现服务隔离。MinIO存储的bucket名称对应RAGFlow知识库中的dataset ID,用户可通过Web控制台直接查看存储内容。该设计既确保了

2025-05-28 11:49:47 577

原创 如何在Python中安全清空指定目录下的所有文件

在日常开发中,我们经常需要处理文件和目录操作。其中,清空指定目录下的所有文件是一个常见需求,比如在临时文件清理、缓存重置或测试环境准备等场景中。本文将介绍几种在Python中清空目录的方法,并讨论每种方法的适用场景和安全注意事项。无论使用哪种方法,都应该添加适当的安全检查和错误处理,避免意外删除重要文件。模块是Python标准库中用于高级文件操作的模块,它提供了。如果只想删除文件但保留目录结构(包括子目录),可以使用。:确保有足够的权限执行操作。函数可以递归删除目录树。:确保操作的是预期的目录。

2025-05-28 10:53:51 215

原创 如何进入Docker镜像查看环境变量

在Docker容器的使用和调试过程中,查看镜像或容器中的环境变量是一项常见且重要的操作。环境变量通常用于配置应用程序行为、传递敏感信息或设置运行时参数。本文将详细介绍几种进入Docker镜像查看环境变量的方法。掌握查看Docker环境变量的方法对于容器调试和问题排查非常重要。根据不同的使用场景,可以选择直接运行env命令、进入交互式Shell或使用等方法。每种方法各有优缺点,建议根据实际情况灵活选择。希望本文能帮助你更好地理解和操作Docker环境变量!

2025-05-28 09:25:09 414

原创 python切片索引错误报错:slice indices must be integers or None or have an __index__ method分析与解决

摘要: Python切片操作要求索引必须是整数、None或实现__index__方法的对象,否则会触发TypeError。常见错误包括使用浮点数、字符串或无效对象作为索引。解决方案包括强制转换为整数(如int(Config.TOP_N))、检查索引类型或自定义类实现__index__方法。关键点:确保切片索引符合规范,可通过类型转换或方法实现避免错误。 🚀

2025-05-27 18:15:00 44

原创 Ubantu服务器上的LiberOffice桌面版(版本24.2.7.2)如何设置中文

本文介绍了将LibreOffice软件界面切换为中文的详细步骤:首先打开软件,在Tools菜单中找到Options;然后修改User Interface语言为Chinese;若无中文选项,则需通过命令行安装中文语言包(apt-get install libreoffice-l10n-zh-cn libreoffice-help-zh-cn);最后重启软件即可完成切换。文中配有操作界面截图辅助说明。(98字)

2025-05-26 15:44:14 254

原创 Elasticsearch实战:法律文档索引与管理的技术实践

通过这个法律文档索引案例,我们展示了Elasticsearch在专业领域数据管理中的强大能力。合理的索引设计加上灵活的查询和更新操作,可以构建出高效的专业文档管理系统。在实际应用中,还需要根据具体业务需求和数据特点不断调整和优化。希望这篇技术分享能为需要在专业领域应用Elasticsearch的开发者提供有价值的参考。

2025-05-26 14:29:32 192

原创 python实战:Python脚本后台运行的方法

选择哪种方法取决于你的具体需求和系统环境。对于生产环境,推荐使用systemd服务或supervisor等进程管理工具。这样会将脚本放入后台运行,但关闭终端时脚本可能会被终止。最简单的后台运行方式是在命令末尾添加。在Python脚本内部可以使用。

2025-05-23 18:56:53 132

原创 看懂RagFlow的docker-compose.yml中的`./`和`../`路径

在Docker Compose中,./和../是常用的相对路径表示方式,分别代表当前目录和父级目录。所有相对路径的解析都是基于docker-compose.yml文件所在的位置。./用于引用与配置文件同级的文件或目录,而../则用于引用上一级目录中的内容。理解这些路径的基准对于确保项目的可移植性、团队协作和路径一致性至关重要。通过合理使用相对路径,可以更灵活地管理多环境配置,并有效调试路径问题。掌握这些基本概念和技巧,能够帮助开发者更高效地编写和维护Docker Compose配置文件。

2025-05-23 09:48:43 599

原创 python实战:如何获取word文档中指定内容并作为新文件名

本文介绍了如何使用Python的python-docx库从Word文档中提取特定内容(如仲裁庭秘书的名字)并以此重命名文件。代码示例展示了如何打开文档、遍历段落、查找包含“仲裁庭秘书:”的文本,并提取秘书名字作为新文件名的一部分。代码会创建一个新命名的副本文件,并可以选择删除原文件。此方法适用于需要根据文档内容自动重命名文件的场景,确保文件命名与文档内容一致。

2025-05-22 16:51:01 58

原创 RAGFlow知识检索原理解析:混合检索架构与工程实践

RAGFlow采用四阶段处理流水线和双路召回+重排序的混合架构,通过Elasticsearch实现向量计算加速和混合检索参数配置。其双路召回机制包括关键词通路和向量通路,采用级联式重排序策略优化检索结果。工程实践中,Elasticsearch在查询延迟、索引吞吐量和混合搜索准确率上表现优于Infinity。关键优化策略包括缓存分层设计和负载均衡方案。典型应用场景如金融文档检索和法律条款查询,混合检索显著提升了查全率、查准率和响应时间。RAGFlow的混合检索架构为复杂场景下的知识检索提供了高效解决方案,建议

2025-05-22 14:22:12 364

原创 使用 Xinference 启动自定义模型:从本地加载与部署指南

本文详细介绍了如何在 Docker 环境中使用 Xinference 框架加载和部署本地自定义模型。首先,Xinference 支持从本地路径加载模型,通过 XINFERENCE_MODEL_SRC 环境变量设置为 local,并将模型目录挂载到容器内。其次,文章提供了改造后的 Docker 命令示例,并解释了关键参数的作用,如模型目录结构、挂载路径和日志级别。此外,还介绍了如何验证模型加载成功、多模型管理、性能调优和常见问题解决方法。通过本文的指导,用户可以轻松部署私有或微调的模型,满足特定业务需求。

2025-05-22 14:10:18 1159 2

原创 python实战:如何对比两个word文档,并且显示差异内容

在实际开发中,对比两个Word文档并标记差异部分是一个常见需求。本文介绍了如何使用Python实现这一功能,通过pandoc将文档转换为文本,使用difflib进行差异比较,并结合jieba进行中文分词,最终生成带有修订标记的Word文档。新增部分用蓝色加下划线标记,删除部分用红色加删除线标记。生成文档后,可以通过WPS或Office的清除格式功能去除标记,确保文档的最终一致性。

2025-05-20 11:39:15 199

原创 Python文件路径处理技巧:如何提取文件名并生成新路径

在Python开发中,正确处理文件路径是提升代码健壮性和可移植性的关键。本文介绍了两种主要的路径处理方法:os.path模块和pathlib库。os.path提供了跨平台的路径处理函数,而pathlib则提供了更直观的面向对象API,推荐在Python 3.4+项目中使用。文章还分享了一些实用技巧,如批量处理文件、相对路径转绝对路径、检查路径有效性以及跨平台路径处理。最后,强调了避免手动拼接路径字符串的重要性,并建议根据项目需求选择合适的路径处理工具,以确保代码的可读性和维护性。

2025-05-20 09:20:11 41

原创 Linux基础命令:cp命令详解与实用技巧

cp是Linux和Unix-like系统中用于复制文件和目录的基本命令,全称为"copy"。它是每个Linux用户必须掌握的核心命令之一,几乎在日常文件操作中都会用到。cp命令虽然简单,但通过不同的选项组合可以实现各种复杂的复制需求。掌握cp命令是Linux文件管理的基础,合理使用其选项可以大大提高工作效率并避免数据丢失风险。希望这篇指南能帮助你更好地理解和使用cp命令!对于日常操作,建议至少熟悉-i-r和-a这几个常用选项。

2025-05-19 11:08:23 215

原创 如何git clone下来自定义文件名

在Git中,若需在克隆仓库的同时自定义项目文件夹名称,可以使用以下命令: git clone 仓库地址 自定义文件名 例如,克隆一个名为example-repo的仓库并重命名为my-project,命令如下: git clone https://github.com/user/example-repo.git my-project 此命令将克隆仓库到当前目录,并将文件夹命名为my-project。

2025-05-19 11:05:32 277

原创 RAGFlow升级到最新0.18.0新手指南

RAGFlow 0.17.2版本存在知识库阈值为0时返回为空,以及匹配度达到95以上时只返回一个分块的问题。为了解决这些问题,博主决定升级到最新版本0.18.0。升级步骤包括拉取最新代码、切换到0.18.0分支、编辑.env文件中的RAGFLOW_IMAGE变量,并更新Docker映像后重新启动RAGFlow。此指南旨在帮助用户顺利完成升级,并解决旧版本中的已知问题。

2025-05-16 12:03:04 463

原创 使用 vLLM 和 YaRN 扩展技术部署 Qwen3-32B 大模型:实现 80K 长文本推理

vLLM 是一个高性能的 LLM 推理和服务引擎,以其高效的注意力机制(PagedAttention)和优异的内存管理著称。它提供了与 OpenAI API 兼容的接口,使得现有应用可以无缝迁移。通过vLLM与YaRN技术的结合,我们成功将Qwen3-32B的上下文处理能力从32K扩展到80K,为长文本应用场景提供了强大的技术支持。这种部署方案兼具高效性和实用性,是处理大模型长上下文需求的优选方案。随着硬件和算法的不断进步,我们期待看到更大上下文窗口的模型服务成为可能。延伸阅读vLLM官方文档。

2025-05-16 09:12:48 440

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除