性能(performance)设计非常重要,对于服务器端实时交易系统来说系统性能的重要性不言而喻,对客户端软件来说性能好的软件也会获得良好的用户体验,从而给用户留下高质量软件的良好印象。因此在进行架构设计中性能设计非常重要。
但架构设计实际是一个平衡设计,在可用性、可扩展性、可维护性、可靠性、高性能等之间做个妥协选择。这些非功能性的需求再加上复杂的功能性需求,同时还要考虑到项目管理上tight schedule, low cost, perfect effect的三角难题约束,有时需求还不是很明确,vision不是很清楚,这种情况下系统架构设计真是一门艺术。(可参考笔者另外一篇文章《也谈系统设计的一些原则》)
单就性能设计来说,在架构设计初期就一定要把系统性能考虑在内,否则等开发完成以后测试发现性能不好就比较难办,通常要花费较长的时间来诊断性能瓶颈,找到提升的办法,甚至要改变架构,伤筋动骨,往往造成项目延期。所以性能设计首先要有明确的性能目标,根据用户和软件本身的性能要求来设计,合适的就是最好的。其次,要有适当的度量标准和量化的性能指标。最后,要有相应的设计策略,具体的测试方法。
根据我的经验,影响系统性能主要瓶颈在I/O,包括数据库,socket,网络通信,文件等,例如频繁查询数据库并返回大量结果集,频繁操作大文件等,这些昂贵的操作会占用大量的CPU时间。拿系统响应和服务一个事务来说,有几个Round trip,要通过哪几层I/O,如何合理的分配这些I/O的调用,降低不必要的I/O,都是进行系统性能设计要考虑的。而有些性能问题在初期并不会表现出来,但当拿到实际上线环境下,存在多用户并发、大数据量的情况下就会暴露出严重的问题。所以性能设计时一定要考虑到I/O,同步,并发,资源争用,以及大数据量等因素。通常,I/O操作、网络响应、差的算法、数据库、以及其他的低效的资源使用都会导致低劣的性能。
具体可用的设计策略有:
l 缓存以及缓存层(caching layer)
在数据层和应用层之间增加数据缓存层,提供全局数据服务。可以大大减少数据库往返次数。与读取数据库和读取大文件(如XML文件)比,读取内存的速度无疑要快的多。所以对经常要访问的数据进行缓存是非常好的实践方法。因为现在系统往往内存很大,可以充分利用大内存,而共享内存更能实现数据并发访问。
l 多线程(multi-threading)
现在基本上大部分软件实现多线程或多进程,多线程对单CPU系统还只是顺序利用CPU时间和改善用户体验,多CPU系统才是真正的并行。要注意的是多线程不要争抢访问同一资源而导致部分串行操作,要做到真正的并行操作多线程并不容易。另外,在多线程间同步一个庞大的资源,过多创建线程又没有实现线程池也会导致系统性能下降。
l 负载平衡(load balancing)
物理上增加地位对等的集群服务器(Cluster),通过负载分配算法分配相应服务器来相应客户端请求。很多系统支持负载均衡,Windows server2003 IIS就支持负载均衡服务,其他如WebLogic, WebSphere也有集群版本支持负载均衡。当然你也可以自己实现负载分配算法。
l 数据库优化(database optimization)
如果应用程序使用了数据库,可以采取许多步骤来消除访问和写入数据时的瓶颈:
Ø 标识潜在的索引,但不要创建过多的索引。
Ø 如果使用 SQL Server,则使用 SQL Server 的事件探查器和索引优化向导。
Ø 监视处理器的使用;理想范围是:75-80% 处理器时间。
Ø 使用查询分析器分析查询计划以优化查询。
Ø 使用存储过程优化性能。
Ø 标准化写入的大量数据 —写入较少的数据。
Ø 取消标准化读取的大量数据 —读取较少的数据。
l 文件系统优化
有时候系统性能不好,但当你关闭写log的功能,性能一下子提高很多。因为频繁的打开关闭大log文件时I/O开销非常大,同样记录log到数据库也一样。所以,release版尽量减少写log,或干脆移到裸设备上。
频繁打开关闭文件对系统性能下降程度是惊人的,可以通过一些变通办法来减少文件的频繁操作。
例如,原来的缓存持久化实现是保存在XML文件,每次要获得一个配置项,都打开XML文件,通过XPath拿到这个配置项的值,这样效率不高,而且容易把这个XML文件lock住;改进的方法是:通过比较XML文件的修改时间(System.IO.File.GetLastWriteTime)判断是否要再次打开文件,大大提高了效率;另一个可以改进的方法是:启动时读取所有配置到一个静态的HashTable,每次要获得一个配置项都从内存HashTable获取,在最后或适当的时候持久化到XML。
l 代码性能设计
在编程实现上,代码性能设计也很重要,一些昂贵的操作会占用大量的资源和CPU时间。例如,字符串相加没用StringBuilder, 频繁创建对象,差劲的排序或递归算法,过多的装箱拆箱,过多的使用反射(Reflection),频繁new HashTable或大的数组,用异常(Catch Exception)用做正常的逻辑,使用复杂的正则表达式,等等。具体可以参考《Effective C++》《Effective C#》等书籍。
l 语言的选择
另外,语言选择也很重要。比如相对于Java, C#, C++, 大多数OLTP系统用C语言效率高的多,因为在所有的高级程序设计语言中,C程序设计语言的运行效率是公认的。再比如我们熟悉的一些框架,框架本身是C#或是Java的,但其核心独立模块是C++封装的,这样可以达到最佳的性能。所以对于一些特定的业务需求目标和数据的具体情况,对于核心的模块或算法,可以用特定的语言来实现以获得更好的效率。
l 应用层
比如应用层和数据库的API,在.Net中就有就有DataReader、DataSet和IList等的选择以及转换等,这个根据具体情况而定;还有就是大家常采用的数据的格式化和压缩,以及采用分页,减少传输的数据量;是否可以把一部分处理逻辑放在客户端呢,减少服务端的工作量。界面端也是有很多针对性能优化的考虑,例如绘图,控件重绘都是非常耗资源的,各控件的数据加载和数据绑定性能也各不相同,尽量采用惰性加载,异步加载;初始化和启动速度等都是需要考虑和优化的。
这些只是我项目经验积累和归纳,水平有限,项目有限,认识更有限,欢迎大家指正补充。
-------------
例1:
现象:广告应用做性能测试时,用1个虚拟用户时,性能正常,用3个虚拟用户时响应有些慢,用10个虚拟用户不到2分钟,就报错java.lang.OutOfMemoryError:Java heap space,负载方面正常
原因:每一次计数都要写入,不停的打开关闭文件太频繁,导致内存不足
解决方案:计数先存入缓存,到一定量时再一次性写入文件,比如10000的量写入
例2:
现象:我平时在linux环境上做开发时很习惯封装类似如下的文件追加函数,而且性能很高。
int appendfike(...)
{
fopen...
fwrite...
fclose...
...
}
按上面代码移植到vc6或vc2008时发现性能好低呀,追加上万条记录就感觉到很慢了。
但是我改成只打开一次,而写N条记录这样性能却很高。
请问是文件系统不同的原因造成的吗?还是其它原因呀?
原因:你这封装的也太烂了,每一次计数都要写入,不停的打开关闭文件太频繁,不但导致效率很低,文件本身就很容易坏掉而无法打开。
解决方案:把FILE打开就留下来重复使用;
先将要写入的数据放到一块内存中,积累到了一定数量的时候,一次写入。几乎所有的数据库也都是这么干的,就是在commit(提交)的时候,数据才会真正写入到数据库文件中,否则都是在内存里面。在未commit之前,自己虽然可以看到数据表的变化,但是其它的用户是看不到的。
曾经用sqlite3在android手机上做过一个实验,如果每插入一条记录就commit一次(类似楼主的做法),其性能要比插入300条记录,commit一次差好几十倍。
不管是*nix还是windows,楼主的那种做法,效率都不会高,硬盘也会受不了的。
转:http://www.cnblogs.com/mainz/archive/2007/12/15/996082.html
留言:
Jonny Yu
博主主要谈的是如何优化系统性能 ,其实我觉得这些技术本身都是很好的,但是一般来说出现性能问题并不是因为缺乏优化的意识和技术,而更多的是由于没有发现的性能瓶颈或者忽视了这个瓶颈的重要性。 对于长期使用的系统的架构设计时,加入应用服务质量指标的检测的目标是很有必要的
@Jonny Yu
同意,最好有性能测试,压力测试,以及相关工具来找出瓶颈,这个往往比较困难