AT5697「AGC041F」Histogram Rooks

Address

AT5697

Algorithm 1

考虑每次取出区间中 h h h 的最小值建出笛卡尔树,令每个结点表示一个区间,从叶子结点往上 DP。

考虑对每个区间内的所有列分类,设当前处理的高度为 x x x

  1. 在高度大于 x x x 的某个位置存在一个 ,现在可以任意填放
  2. 在高度大于 x x x 的所有位置都不存在 ,但这些位置都被其它 覆盖;
  3. 在高度大于 x x x 的所有位置都不存在 ,且这些位置中存在至少一个位置没有被其它 覆盖。

f s , i , j f_{s,i,j} fs,i,j 表示在结点 s s s i i i 个 1 类列、 j j j 个 2 类列的方案数,两个子区间的方案显然可以直接合并。

依次考虑结点 s s s 自身所包含的每个行连续段 的放置方案,设区间长度为 l e n len len,容易得到如下转移:

  • 不放置任何

f s , i + j , 0 ′ = f s , i + j , 0 ′ + f s , i , j \begin{aligned}f'_{s,i + j,0} = f'_{s,i + j,0} + f_{s,i,j} \end{aligned} fs,i+j,0=fs,i+j,0+fs,i,j

  • 只在 1 类列放置

f s , i , j ′ = f s , i , j ′ + ( 2 i − 1 ) f s , i , j \begin{aligned} f'_{s,i,j} = f'_{s,i,j} + (2^i - 1)f_{s,i,j} \end{aligned} fs,i,j=fs,i,j+(2i1)fs,i,j

  • 在 2 类列和 3 类列放置任意数量(至少为 1 1 1)的 ,此时 1 类列可以任意放置
    f s , i + x + y , j − x ′ = f s , i + x + y , j − x ′ + 2 i C j x C l e n − i − j y f s , i , j ( 0 ≤ x ≤ j , 0 ≤ y ≤ l e n − i − j , x + y > 0 ) \begin{aligned}f'_{s,i + x + y,j-x} = f'_{s,i + x + y,j-x} + 2^iC_j^xC_{len - i - j}^{y}f_{s,i,j}(0 \le x \le j, 0 \le y \le len - i -j, x + y > 0)\end{aligned} fs,i+x+y,jx=fs,i+x+y,jx+2iCjxClenijyfs,i,j(0xj,0ylenij,x+y>0)

直接实现是 O ( N 5 ) \mathcal O(N^5) O(N5) 的,考虑优化状态。

注意到如果我们假定接下来填的每一行都至少有一个 ,那么所有 2 类列都可以看做 1 类列,否则都可以看做 3 类列。

于是我们可以在状态中额外记录一维 0 / 1 0/1 0/1 表示接下来填的每一行是否都至少有一个 ,就可以把 2 类列的数量并到 1 类列或者 3 类列中去。

类似地得到所有转移,时间复杂度 O ( N 3 ) \mathcal O(N^3) O(N3)

Code 1

#include <bits/stdc++.h>

const int N = 1e4 + 5;
const int mod = 998244353;
int len[N], c[N][N], ex[N], f[N][N], g[N][N], tf[N], tg[N], h[N];
int n, T, rt;

inline void add(int &x, int y)
{
	x += y;
	x >= mod ? x -= mod : 0;
}

inline void dec(int &x, int y)
{
	x -= y;
	x < 0 ? x += mod : 0;
}

inline void Update(int now, int x)
{
	for (int i = 0; i <= len[x] + len[now]; ++i)
		tf[i] = tg[i] = 0;
	for (int i = 0; i <= len[x]; ++i)
		for (int j = 0; j <= len[now]; ++j)
		{
			tf[i + j] = (1ll * f[x][i] * f[now][j] + tf[i + j]) % mod;
			tg[i + j] = (1ll * g[x][i] * g[now][j] + tg[i + j]) % mod;
		}
	len[now] += len[x];
	for (int i = 0; i <= len[now]; ++i)
		f[now][i] = tf[i], g[now][i] = tg[i];
}

inline int solve(int l, int r, int lst)
{
	if (l > r)
		return 0;
	
	int mid = l, now = ++T;
	for (int i = l + 1; i <= r; ++i)
		if (h[i] < h[mid])
			mid = i;

	int lc = solve(l, mid - 1, h[mid]),
		rc = solve(mid + 1, r, h[mid]);
	f[now][0] = g[now][0] = len[now] = 1;
	if (lc)	
		Update(now, lc);
	if (rc)
		Update(now, rc);
	int _len = len[now];
	for (int i = 1; i <= h[mid] - lst; ++i)
	{
		for (int j = 0; j <= _len; ++j)
			tf[j] = tg[j] = 0;
		if (i == 1)
		{
			int delta = 0;
			for (int j = l; j <= r; ++j)
				if (h[j] == h[mid])
					++delta;
			_len -= delta;
			for (int j = 0; j <= _len; ++j)
			{
				tf[j + delta] = (1ll * f[now][j] * (ex[j] - 1) + tf[j + delta]) % mod;
				tg[j] = (1ll * g[now][j] * (ex[j] - 1) + tg[j]) % mod;

				add(tf[j], g[now][j]);
				add(tg[j], g[now][j]);
				for (int a = 0; j + a <= _len; ++a)
					for (int b = 0; b <= delta; ++b)
						if (a + b > 0)
						{
							int tmp = 1ll * c[_len - j][a] * c[delta][b] % mod * ex[j] % mod;
							tf[j + a + delta] = (1ll * tmp * f[now][j] + tf[j + a + delta]) % mod;
							tg[j + a + b] = (1ll * tmp * g[now][j] + tg[j + a + b]) % mod;
						}
			}
			_len += delta;
		}
		else
		{
			for (int j = 0; j <= _len; ++j)
			{
				tf[j] = (1ll * f[now][j] * (ex[j] - 1) + tf[j]) % mod;
				tg[j] = (1ll * g[now][j] * (ex[j] - 1) + tg[j]) % mod;		

				add(tf[j], g[now][j]);
				add(tg[j], g[now][j]);

				for (int k = 1; j + k <= _len; ++k)
				{
					tf[j + k] = (1ll * f[now][j] * c[_len - j][k] % mod * ex[j] + tf[j + k]) % mod;
					tg[j + k] = (1ll * g[now][j] * c[_len - j][k] % mod * ex[j] + tg[j + k]) % mod;
				}
			}
		}
		for (int j = 0; j <= _len; ++j)
			f[now][j] = tf[j], g[now][j] = tg[j];
	}
	return now;
}

int main()
{
	scanf("%d", &n);
	for (int i = 1; i <= n; ++i)
		scanf("%d", &h[i]);

	ex[0] = 1;
	for (int i = 1; i <= n; ++i)
		add(ex[i] = ex[i - 1], ex[i - 1]);
	c[0][0] = 1;
	for (int i = 1; i <= n; ++i)
	{
		c[i][0] = 1;
		for (int j = 1; j <= i; ++j)
			add(c[i][j] = c[i - 1][j - 1], c[i - 1][j]);
	}

	rt = solve(1, n, 0);
	printf("%d\n", f[rt][n]);
	return 0;
}

Algorithm 2

考虑容斥,即钦定若干个方格没有被 覆盖,求出此时的方案数,容斥系数为 ( − 1 ) 方 格 个 数 (-1)^{方格个数} (1)

注意到如果一个方格被钦定,方格所在的列一定没有

于是我们在状态中记录钦定没有 的列的数量,设 f s , i f_{s,i} fs,i 表示在结点 s s s 共有 i i i 列钦定没有 的容斥系数乘上方案数的和。

两个子区间的合并只需要考虑中间新增的那一列是否被钦定即可。

对于填每个行连续段的情况,我们同样进行一些讨论,设区间长度为 l e n len len,共有 i i i 列钦定没有

  1. 若连续段中没有选择任何一个方格钦定没有被 覆盖,方案数为 2 l e n − i 2^{len - i} 2leni
  2. 若连续段中选择了一些方格钦定没有被 覆盖,连续段中不能再填 ,容斥系数和为 ∑ k = 1 i ( − 1 ) k C i k = − [ i ≠ 0 ] \sum \limits_{k = 1}^{i}(-1)^kC_{i}^{k} = -[i \neq 0] k=1i(1)kCik=[i=0]

因此转移前的系数和为 2 l e n − i − [ i ≠ 0 ] 2^{len - i} - [i \neq 0] 2leni[i=0]

但这样做是有一些问题的,因为我们无法保证钦定的列中都有方格被选。

考虑再次容斥,我们钦定有 j j j 列在第一次钦定后没有方格被选,容斥系数为 ( − 1 ) j (-1)^j (1)j

那么只有第二种情况的系数和变为了 ∑ k = 1 i − j ( − 1 ) k C i k = − [ i ≠ j ] \sum \limits_{k = 1}^{i - j}(-1)^kC_{i}^{k} = -[i \neq j] k=1ij(1)kCik=[i=j],总的系数和为 2 l e n − i − [ i ≠ j ] 2^{len - i} - [i \neq j] 2leni[i=j]

因此我们并不关心 j j j 的取值,只需要在状态中额外记录一维表示 i i i 是否等于 j j j 即可。

时间复杂度 O ( N 2 ) \mathcal O(N^2) O(N2)

Code 2

#include <bits/stdc++.h>

const int N = 1e4 + 5;
const int mod = 998244353;
int len[N], ex[N], f[N][N], g[N][N], h[N];
int n, T, rt;

inline int quick_pow(int x, int k)
{
	int res = 1;
	while (k)
	{
		if (k & 1)
			res = 1ll * res * x % mod;
		x = 1ll * x * x % mod;
		k >>= 1;
	}
	return res;
}

inline void add(int &x, int y)
{
	x += y;
	x >= mod ? x -= mod : 0;
}

inline void dec(int &x, int y)
{
	x -= y;
	x < 0 ? x += mod : 0;
}

inline int solve(int l, int r, int lst)
{
	if (l > r)
		return 0;
	
	int mid = l, now = ++T;
	for (int i = l + 1; i <= r; ++i)
		if (h[i] < h[mid])
			mid = i;

	int lc = solve(l, mid - 1, h[mid]),
		rc = solve(mid + 1, r, h[mid]);
	for (int i = 0; i <= len[lc]; ++i)
		for (int j = 0; j <= len[rc]; ++j)
		{
			int t = i + j;
			int a = 1ll * f[lc][i] * f[rc][j] % mod,
				b = (1ll * g[lc][i] * (f[rc][j] + g[rc][j]) + 1ll * f[lc][i] * g[rc][j]) % mod;
			add(f[now][t], a);
			add(g[now][t], b);
			dec(f[now][t + 1], a);
			add(g[now][t + 1], a);
		}
	len[now] = len[lc] + len[rc] + 1;
	for (int j = 0; j <= len[now]; ++j)
	{
		f[now][j] = 1ll * f[now][j] * quick_pow(ex[len[now] - j], h[mid] - lst) % mod;
		g[now][j] = 1ll * g[now][j] * quick_pow(ex[len[now] - j] - 1, h[mid] - lst) % mod;
	}
	return now;
}

int main()
{
	f[0][0] = 1;
	scanf("%d", &n);
	for (int i = 1; i <= n; ++i)
		scanf("%d", &h[i]);

	ex[0] = 1;
	for (int i = 1; i <= n; ++i)
		add(ex[i] = ex[i - 1], ex[i - 1]);
	rt = solve(1, n, 0);

	int ans = 0;
	for (int i = 0; i <= n; ++i)
	{
		add(ans, f[rt][i]);
		add(ans, g[rt][i]);
	}
	printf("%d\n", ans);
	return 0;
}
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值