BZOJ1833 [ZJOI2010]count 数字计数

58 篇文章 0 订阅

Description

  • 给定两个正整数 a b,求在 [a,b] 中的所有整数中,每个数码 (digit) 各出现了多少次。

Input

  • 输入文件中仅包含一行两个整数 a,b ,含义如上所述。

Output

  • 输出文件中包含一行 10 个整数,分别表示 09 [a,b] 中出现了多少次。

Sample Input

  • 1 99

Sample Output

  • 9 20 20 20 20 20 20 20 20 20

HINT

  • 30%的数据中: ab106
  • 100%的数据中: ab1012

Source

  • Day1

Problem Address

Solution 数位DP(注释在代码中给出)

Code

#include <iostream>
#include <cstdio>
#include <cstring>

using namespace std;
const int Maxn = 0x3f3f3f3f;
const int N = 15;
typedef long long ll;
ll f[N], tn[N], num[N], sta[N], stb[N], a, b;

inline ll get()
{
    char ch; bool f = false; ll res = 0;
    while (((ch = getchar()) < '0' || ch > '9') && ch != '-');
    if (ch == '-') f = true;
     else res = ch - '0';
    while ((ch = getchar()) >='0' && ch <= '9')
        res = (res << 3) + (res << 1) + ch - '0';
    return f? ~res + 1 : res;
}

inline void put(ll x)
{
    if (x < 0)
      x = ~x + 1, putchar('-');
    if (x > 9) put(x / 10);
    putchar(x % 10 + 48);
}

inline void Find(ll x, ll *st)
{
    if (x == 0) return;
    ll res = x; int m = 0;
    while (x) num[++m] = x % 10, x /= 10;
    //拆出每一位,记为num[i] 
    for (int i = 1; i < m; ++i)
    //对于1~m-1位数,我们不用考虑数的上限(<=x), 所以可以先处理 
    {
        st[0] += (f[i - 1] << 3) + f[i - 1];
        //真正求解的时候不含前导0(第i位不存在0), 
        //所以对于前i-1位存在的每一个数字(0~9),第i位只有9种可能。 
        //同时对于0,前i-1位的每一种排列方案也要排除。 
        for (int j = 1; j < 10; ++j) 
         st[j] += (f[i - 1] << 3) + f[i - 1] + tn[i - 1];

    }
    res -= num[m] * tn[m - 1]; //接下来我们考虑m位数 
    for (int i = 1; i < num[m]; ++i) st[i] += tn[m - 1];
    //对于第m位的1~num[m]-1(不含前导0), 
    //前m-1位的每一种排列仍可直接算作一种方案。 
    for (int i = 0; i < 10; ++i) 
     st[i] += f[m - 1] * (num[m] - 1);
    //对于第1~m-1位出现的每一个数字, 
    //数字1~num[m]-1仍可直接算作一种方案。 
    st[num[m]] += res + 1;
    //保持最高位的上限数字不动, 
    //方案数即为扣除最高位的总方案数(0~res)。 
    for (int i = m - 1; i; --i)
    {
        res -= num[i] * tn[i - 1];
        //从高位删到低位, 
        //每一位都要像我们刚才的第m位处理,但不用考虑前导0。 
        for (int j = 0; j < num[i]; ++j) st[j] += tn[i - 1];
        for (int j = 0; j < 10; ++j) st[j] += f[i - 1] * num[i];
        st[num[i]] += res + 1;
    } 

}

int main()
{
    a = get(); b = get(); tn[0] = 1;
    //先计算出[1,a-1],[1,b]中每个数字出现的个数,然后相减即可。 
    //问题变为:给一个数n,求1,2,…,n中每个数字出现的次数。  
    for (int i = 1; i < 15; ++i)
    {
        f[i] = (f[i - 1] << 3) + (f[i - 1] << 1) + tn[i - 1];
        //首先,允许前导0,也不考虑数大小的上限,设位数为 i。 
        //前i位每种数字出现的次数是相同的,记为 f[i]。 
        //不难得出递推式 f[i]=10*f[i-1]+10^(i-1)。 
        //10*f[i-1]表示对于前i-1位出现的每一个数字, 
        //第i位都存在10种方案(0~9);
        //10^(i-1)表示对于第i位出现的唯一一个数字, 
        //前i-1位的每一种排列都算作一种方案。 
        tn[i] = (tn[i - 1] << 3) + (tn[i - 1] << 1);
    }  
    Find(a - 1, sta); Find(b, stb);
    for (int i = 0; i < 9; ++i) put(stb[i] - sta[i]), putchar(' '); 
    return put(stb[9] - sta[9]), 0; 
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值