BZOJ2510 弱题



Address


Solution

  • f[i][j] f [ i ] [ j ] 表示第 i i 次操作后,标号为 j 的球的期望个数。
  • pre[i]=i1(2in),pre[1]=n p r e [ i ] = i − 1 ( 2 ≤ i ≤ n ) , p r e [ 1 ] = n
  • 则若第 i1 i − 1 次操作后,标号为 j j 的球的期望个数为 x,标号为 pre[j] p r e [ j ] 的球的期望个数为 y y ,对于第 i 次操作:
    • xm x m 的概率取出标号为 j j 的球,操作后标号为 j 的个数变为 x1 x − 1
    • ym y m 的概率取出标号为 pre[j] p r e [ j ] 的球,操作后标号为 j j 的个数变为 x+1
    • mxym m − x − y m 的概率取出其它球,操作后标号为 j j 的个数不变。
  • 因此可以得到转移方程:
    f[i][j]=f[i1][pre[j]]m×(f[i1][j]+1)+f[i1][j]m×(f[i1][j]1)+mf[i1][pre[j]]f[i1][j]m×f[i1][j]
  • 展开消去同类项,得到 f[i][j]=m1mf[i1][j]+1mf[i1][pre[j]] f [ i ] [ j ] = m − 1 m f [ i − 1 ] [ j ] + 1 m f [ i − 1 ] [ p r e [ j ] ]
  • 时间复杂度 O(nK) O ( n K ) ,显然不能通过。
  • 考虑矩阵优化,复杂度就被优化到了 O(n3logK) O ( n 3 log ⁡ K ) ,转移矩阵如下:
    m1m001m1mm1m0001mm1m00001m { m − 1 m 1 m 0 ⋯ 0 0 m − 1 m 1 m ⋯ 0 0 0 m − 1 m ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 1 m 0 0 ⋯ 1 m }
  • 尽管依然不能通过,我们会发现转移矩阵的任意次方都是这样的形式:
    x1xnxn1x2x2x1xnx3x3x2x1x4............xnxn1xn2x1 { x 1 x 2 x 3 . . . x n x n x 1 x 2 . . . x n − 1 x n − 1 x n x 1 . . . x n − 2 ⋮ ⋮ ⋮ ⋱ ⋮ x 2 x 3 x 4 . . . x 1 }
  • 因此只要计算出矩阵第一行的值,其余的行都可以随之确定,时间复杂度 O(n2logK) O ( n 2 log ⁡ K )

Code

  • 仿佛这里的矩阵由于空间太大不能用结构体写
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cctype>

using namespace std;

const int N = 1005;
int n, K, pre[N]; double m;
double c[N][N], a[N], b[N][N], d[N][N], ans[N];

inline void Push(double x[N][N], double y[N][N])
{
    for (int i = 1; i <= n; ++i)
        for (int j = 1; j <= n; ++j)
            x[i][j] = y[i][j];
}

inline void Join(double x[N][N], double y[N][N], double z[N][N])
{
    for (int i = 1; i <= n; ++i)
        for (int j = 1; j <= n; ++j)
            z[i][j] = 0.0;
    for (int k = 1; k <= n; ++k)
        for (int j = 1; j <= n; ++j)
            z[1][j] += x[1][k] * y[k][j];
    for (int i = 2; i <= n; ++i)
        for (int j = 1; j <= n; ++j)
            z[i][j] = z[i - 1][pre[j]];
}

int main()
{
    scanf("%d%lf%d", &n, &m, &K);
    for (int i = 1; i <= n; ++i) 
        scanf("%lf", &a[i]);
    for (int i = 2; i <= n; ++i) 
        pre[i] = i - 1; pre[1] = n;
    double p1 = (m - 1.0) / m, p2 = 1.0 / m;
    for (int j = 1; j <= n; ++j) 
        b[j][j] = p1, b[pre[j]][j] = p2;

    for (int i = 1; i <= n; ++i) c[i][i] = 1;
    while (K)
    {
        if (K & 1)
            Join(b, c, d), Push(c, d);
        Join(b, b, d); Push(b, d); K >>= 1;
    }
    for (int i = 1; i <= n; ++i)
        for (int j = 1; j <= n; ++j)
            ans[j] += a[i] * c[i][j];

    for (int i = 1; i <= n; ++i)
        printf("%.3lf\n", ans[i]);
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值